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Abstract

This paper explores the aggregate effect when caching
multiple versions of the same Web object in the transcoding
proxy. Explicitly, the aggregate profit from caching multi-
ple versions of an object is not simply the sum of the profits
from caching individual versions, but rather, depends on the
transcoding relationships among them. Hence, to evaluate
the profit from caching each version of an object efficiently,
we devise the notion of a weighted transcoding graph and
formulate a generalized profit function which explicitly con-
siders the aggregate effect and several new emerging factors
in the transcoding proxy. Based on the weighted transcod-
ing graph and the generalized profit function, an innova-
tive cache replacement algorithm for transcoding proxies
is proposed in this paper. Experimental results show that
the algorithm proposed consistently outperforms compan-
ion schemes in terms of the delay saving ratios and cache
hit ratios.

1. Introduction

Recent technology advances in mobile communication
have ushered in a new era of personal communication.
Users can ubiquitously access the Internet via many mobile
appliances, such as handheld PCs, personal digital assis-
tants (PDAs), and WAP-enabled cellular phones. As these
devices are divergent in size, weight, input/output capabil-
ities, network connectivity and computing power, differen-
tiated services should be tailored and delivered in a certain
way to meet their diverse needs. In addition, users may have
different content presentation preferences. Both lead to the
demand of transcoding technologies to adapt the same Web
object to various mobile appliances [6].

Transcoding is defined as a transformation that is used to
convert a multimedia object from one form to another, fre-

quently trading off object fidelity for size. For the mobile
appliances featured with lower-bandwidth network connec-
tivity, transcoding can be used to reduce the object size by
lowering the image resolution or downscaling the image
size. For the mobile appliances which only accept a text,
transcoding can be used to covert the image or speech into
a text. As pointed in [5], from the aspect of the place where
transcoding is performed, the transcoding technologies can
be classified into three categories, i.e., server-based, client-
based, and proxy-based approaches. In the server-based ap-
proaches [12], Web objects are off-line transcoded to mul-
tiple versions and stored in the server disks. The advantage
of this approach is that no additional delay will be incurred
by transcoding during the time between the client issues a
request and the server responses to it. The drawback is,
however, keeping several versions of the same object in the
server may cost too much storage space. Further, this ap-
proach is not flexible in dealing with the future change of
clients’ needs. Conversely, in the client-based approaches,
transcoding is left for mobile clients for considerations. The
advantage of this approach is that it can preserve the origi-
nal semantic of system architecture and transport protocols.
However, transcoding at the client side is extremely costly
due to the limited connection bandwidth and computing
power of a mobile device. For these reasons, it will be bet-
ter to transcode the Web objects at the intermediate proxies.
Many studies have recently been conducted to explore the
advantages of proxy-based approaches [6][7][9][10] where
an intermediate proxy is able to on-the-fly transcode the re-
quested object to a proper version according to the client’s
specification before it sends this object to the client. Such
an intermediate proxy which possesses the transcoding ca-
pability is referred to as a transcoding proxy in this paper.

While the transcoding proxy is attracting more and more
attention, it is noted that a transcoding proxy, just as a tra-



ditional Web proxy, plays an important role in the func-
tionality of caching. To enable the cache replacement algo-
rithms devised for traditional Web proxies [1][2][3][14][17]
to handle the situations in transcoding proxies, extensions to
these traditional algorithms are needed. In [5], two extended
strategies, which are called coverage-based and demand-
based strategies, are proposed. Note that when transcoding
the requested object to the specified version before sending
this object to the client, the transcoding proxy has the oppor-
tunity of caching either the original version, the transcoded
version, or both versions of the object in the local memory.
In view of this, the coverage-based strategy in [5] is de-
signed to choose the original version of the object to cache,
whereas the demand-based strategy is designed to choose
the transcoded one to cache. In addition, most cache re-
placement algorithms employ an eviction function to de-
termine the priorities of objects to be replaced. The LRU
(Least Recently Used) algorithm, for example, evicts the
page with the largest elapsed time since the last access of
that page. The LFU (Least Frequently Used) algorithm,
on the other hand, evicts the page with the smallest refer-
ence rate in the cache. Collaborating the eviction function of
the traditional cache replacement algorithm with these two
strategies, we can decide the priority of the cached object to
be evicted and the version of the new coming object to be
cached. For example, the demand-based extension to LRU
algorithm in [5] replaces the object of the largest elapsed
time since its last access with the transcoded version of the
new coming object. The coverage-based extension works
similarly except the evicted object is replaced with the orig-
inal version of the new coming object.

Note that both the coverage-based and demand-based
extensions in [5] are designed for efficient Web caching.
As a research work along this direction, we shall design
in this paper a cache replacement algorithm for transcod-
ing proxies that maximizes the performance of Web object
caching. The motivation for our study is mainly due to
the new emerging factors in the environment of transcod-
ing proxies. First, transcoding incurs additional delays, and
this factor should be included in the eviction functions for
consideration whenever the eviction priority is determined.
For example, suppose there are two cached objects, say, A
andB, having the same eviction priority according to some
eviction function which does not consider the transcoding
delay. Clearly, if the transcoding delay of A is longer than
that of B, A should be given a higher eviction priority than
B so as to shorten the response time. Without considering
the transcoding delays, the traditional cache replacement al-
gorithms could make a wrong replacement decision. Sec-
ond, different versions of the same object are of different
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Figure 1. Illustrative examples.

sizes. Specifically, the transcoded version is usually of a
smaller size than the original one. Thus, the strategy which
chooses the transcoded version to cache may admit more
objects with the same cache capacity. An eviction function
is thus required to take this object size factor into consider-
ation. Third, the reference rates to different versions of an
object should be considered separately because the distribu-
tion of them could affect the caching decision. This can be
seen by two contrary examples illustrated in Figure 1. As-
sume that Lena image has three versions (i.e., A1, A2 and
A3). A1 is the original version with full resolution and size.
A1 can be transcoded to A2 which is of the same size but a
lower resolution. A1 can be also transcoded to A3 which is
of a lower resolution and a smaller size. In addition,A2 can
be transcoded to A3, whereas A3 is the least detailed ver-
sion which cannot be transcoded any more. The transcoding
delay for A1 to A2 and that for A1 to A3 are both assumed
to be 5 ms, and the transcoding delay for A2 to A3 is 3
ms. The transmission delay of fetching object A from Web
server is assumed to be 10 ms. Consider the reference se-
quence 1 in Figure 1, where the numbers of references to
A1, A2 and A3 are all equal to 3. By caching A1, we can
get the delay saving equal to 90 ms, which is obtained by
3 ∗ 10 + 3 ∗ (10 + 5− 5) + 3 ∗ (10 + 5 − 5). By caching



A2, we can, however, get the delay saving only equal to 81
ms, which is obtained by 3 ∗ (10 + 5) + 3 ∗ (10 + 5 − 3).
As such, caching a more detailed version can get more
benefit in this case. However, in reference sequence 2
in Figure 1, the numbers of references to A1, A2 and
A3 are 2, 5 and 2 respectively. By caching A1, we can
get the delay saving equal to 90, which is obtained by
2 ∗ 10 + 5 ∗ (10 + 5 − 5) + 2 ∗ (10 + 5 − 5). In con-
trast, by caching A2, we can get the delay saving equal to
99, which is obtained by 5 ∗ (10 + 5) + 2 ∗ (10 + 5 − 3).
In this case, caching a less detailed version will get more
benefit than caching a more detailed one.

Also, consider the example in reference sequence 1 in
Figure 1, the individual delay savings from caching A1 and
A2 are 90 and 81 ms respectively. However, the aggre-
gate delay saving from cachingA1 andA2 at the same time
is not simply the sum of the individual delay savings (i.e.,
90 + 80 = 171 ms), but rather, depends on the transcoding
relationship among them. Note that the transcoding rela-
tionship in Figure 1(a) can be depicted by a directed graph
with weights on edges as shown in Figure 1(b). Such a di-
rected graph is called a weighted transcoding graph, which
will be formally defined in Section 2. In the example of
Figure 1, when caching A1 and A2 at the same time, the
subsequent references to A2 and A3 are not necessary to be
supported by the transcoding from A1 any more. Instead,
they can be supported by the transcoding from A2 because
there is no transcoding between A2’s, and the transcoding
cost from A2 to A3 is smaller than that from A1 to A3.
Hence, the delay saving from cachingA1 is over-evaluated,
and should be revised as 30 = 3 ∗ 10. The aggregate delay
saving from caching A1 and A2 together is thus 111 rather
than 171. Such an over-evaluation will probably result in
a wrong cache replacement decision as will be explained
below.

Object Delay saving Size 
W 90 8 
A1 90 10 
X 85 8 
Y 75 8 

 

Replace Y
with A2

Object Delay saving Size
W 90 8 

A1, A2 111 18
X 85 8 

 

Figure 2. Wrong cache replacement decision.

In the case of Figure 2, assume that the cache capacity
is 34 Kbytes, and the cache is filled withW , A1,X and Y .
The computed delay saving and size of each object is listed
in the left table of Figure 2. Suppose here comes a new
object A2. In the example of Figure 1, we have calculated

the delay saving from caching it is 122. Without consider-
ing the aggregate effect of caching A1 and A2 together, the
cache replacement algorithm will choose to replace Y with
A2 because the delay saving from caching Y is smaller than
that from caching A2. The resulting cache will, thus, be-
come the one as listed in the right table of Figure 2. Recall
that the aggregate delay saving from caching both A1 and
A2 is 111 rather than 171. Thus, the overall delay saving of
the entire cache decreases from 340 to 286 as Y is replaced
with A2. Obviously, replacing Y with A2 is a wrong cache
replacement decision.

Consequently, we propose an efficient cache replace-
ment algorithm for transcoding proxies in this paper.
Specifically, we formulate a generalized profit function to
evaluate the profit from caching a version of an object. This
generalized profit function explicitly considers several new
emerging factors in the transcoding proxy and the aggre-
gate effect of caching multiple versions of the same object.
As explained, the aggregate effect is not simply the sum
of the delay savings from caching individual versions of
an object, but rather, depends on the transcoding relation-
ship among these versions. Thus, the notion of a weighted
transcoding graph is defined to represents the transcod-
ing relationship among the different versions of an object.
In addition, to evaluate the aggregate effect properly, we
devise Procedure MATC (standing for Minimal Aggregate
Transcoding Cost) to find the subgraph of the weighted
transcoding graph. This subgraph shows the transcoding re-
lationship which minimizes the aggregate transcoding cost
when caching a certain set of versions of the object. Uti-
lizing the generalized profit function as the eviction func-
tion, we propose in this paper an innovative cache replace-
ment algorithm for transcoding proxies. This algorithm is
referred to as algorithm AE (standing for Aggregate Ef-
fect) for the reason that it explores the aggregate effect of
caching multiple versions of an object in the transcoding
proxy. Using an event-driven simulation, we evaluate the
performance of our algorithm under several circumstances.
By varying the simulation parameters, we observe the per-
formance impacts of two important parameters, including
the cache capacity and γFD ratio. In the simulation, al-
gorithm AE is compared with several companion schemes
(i.e., coverage-based LRU, demand-based LRU, coverage-
based LRUMIN and demand-based LRUMIN). The exper-
imental results shows that algorithm AE proposed consis-
tently outperforms the companion schemes in terms of the
primary performance metric, delay saving ratio, and also
the secondary performance metrics, hit ratios.

The rest of this paper is organized as follows. In Section
2, we introduce the system environment where the caching



issues in the transcoding proxy are considered. We propose
our cache replacement algorithm for transcoding proxies in
Section 3. In Section 4, we empirically evaluate the perfor-
mance of several algorithms. We conclude this paper with
Section 5.

2. System Environment

To facilitate our later discussion in this paper, we de-
scribe the system environment in this section. The system
architecture is presented in Section 2.1. The Web object
transcoding is described in Section 2.2.

2.1. System Architecture

This paper studies cache replacement algorithms for the
transcoding proxy which typically interconnects two het-
erogeneous networks. A well-known example of such a
transcoding proxy is the WAP proxy or a gateway, which in-
terconnects the wireless network and the Internet. The mo-
bile clients connect to the WAP proxy via the wireless net-
work, whereas the WAP proxy connects to the Web servers
via IP network. The mobile clients are capable of request-
ing and rendering WAP content. They vary widely in their
features such as the screen size/color, the processing power,
storage, and user interface. The clients can describe their
capabilities via User Agent Profiles (UAProfs) [16] sup-
ported by WAP. UAProfs are initially conveyed when WSP
sessions are established with the WAP proxy. Keeping these
UAProfs in the proxy, the WAP proxy knows the preference
of each client, and will on-the-fly transcode the requested
object to a proper version before delivering to it. Moreover,
as pointed out in [15], to speed up wireless data access, the
WAP proxy also acts as the role of an caching proxy. In
such a circumstance, the WAP proxy has the opportunity of
caching either the original version, the transcoded version,
or both versions of the object for future references. This
emerging caching model justifies the problem we deal with
in this paper. Note that while being applicable to the WAP
architecture, the cache replacement algorithm we shall de-
vise is for general transcoding proxies and by no means re-
stricted to the WAP applications.

2.2. Web Object Transcoding

Transcoding is defined as a transformation that is used
to convert a multimedia object from one form to another,
frequently trading off object fidelity for size. The original
object contains the full information of the content, and usu-
ally corresponds to the original version or the most detailed
version of the object. The original version of object can

be transcoded to a less detailed one, and such a transcoded
object is called the transcoded version or the less detailed
version of the object. Without loss of generality, we as-
sume that each object can be represented in n versions.
The original version of object is denoted as V1 (i.e., ver-
sion 1), whereas the least detailed version which cannot be
transcoded any more is denoted as Vn (i.e., version n). The
intermediate versions are, in turn, denoted as V2, ..., Vn−1,
in which Vi is a more detailed version than Vj for each i, j
if i < j.

It is noted that not every Vi can be transcoded to Vj for
i < j. It is possible that Vi does not contain enough con-
tent information for the transcoding to Vj . The transcoding
proxy thus must a priori know the transcodable relationship
of an object whenever it performs the transcoding. To this
end, we devise the notion of weighted transcoding graph as
defined in Definition 1.

Definition 1 The weighted transcoding graph, Gi, is a
directed graph with weight funtion wi. Gi depicts the
transcoding relationship among transcodable versions of
object i. For each vertex v ∈ V [Gi], v represents a
transcodable version of object i. Version u of object i is
transcodable to version v iff there exists a directed edge
(u, v) ∈ E[Gi]. The transcoding cost from version u to
v is given by wi(u, v) which is the weight of the edge from
u to v.
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Figure 3. Weighted transcoding graph.

The weighted transcoding graph is in essence an ex-
tension to the transcoding relation graph proposed in [5].
For each object, we maintain a corresponding weighted
transcoding graph in the transcoding proxy. Note that
since each version is surely transcodable to itself with null
transcoding, there is a directed edge pointed from each ver-
sion to itself with the corresponding weight being 0. An
example of weighted transcoding graph is given in Figure
3 where the original version V1 can be transcoded to each



less detailed versions V2, V3 and V4. However, V3 cannot
be transcoded to V4 due to insufficient content information.

3. Cache Replacement Algorithms for
Transcoding Proxies

In Section 3.1, we define the generalized profit function
which will be used to determine the eviction priorities of
the cached objects in our algorithm. To evaluate the aggre-
gate effect properly, we devise Procedure MATC (standing
for Minimal Aggregate Transcoding Cost) to find the sub-
graph of the weighted transcoding graph. This subgraph
shows the transcoding relationship which minimizes the ag-
gregate transcoding cost when caching a certain set of ver-
sions of the object. Utilizing this generalized profit function
as the eviction function, we design an innovative cache re-
placement algorithm for transcoding proxies in Section 3.2.
This algorithm is referred to as algorithm AE (standing for
Aggregate Effect) for the reason that it explores the aggre-
gate effect of caching multiple versions of an object in the
transcoding proxy.

3.1. Generalized Profit Function

As mentioned in Section 1, most cache replacement al-
gorithms employ an eviction function to determine the pri-
orities of objects to be replaced. In our algorithm, we de-
termine the eviction priorities according to the generalized
profit function, which will be defined later. Initially, we will
derive the individual profit function for the calculation of
the profit from caching a single version of an object. Then,
we derive the aggregate profit function for the calculation of
the profit from caching multiple versions of an object at the
same time. Based on the aggregate profit function, we for-
mulate the marginal profit function for the calculation of the
profit from caching a version of an object, given other ver-
sions of the object are already cached. Finally, we conclude
these profit functions as the generalized profit function.

Let oi,j denote version j of object i. The reference rates
to different versions of objects are assumed to be statis-
tically independent and denoted by ri,j , where ri,j is the
mean reference rate to version j of object i. The mean de-
lay to fetch object i from the original server to the transcod-
ing proxy is denoted by di, where we define the delay to
fetch an object as the time interval between sending the re-
quest and receiving the last byte of response. The size of
version j of object i is denoted by si,j. The corresponding
weighted transcoding graph of object i is denoted by Gi,
and the transcoding delay of object i from version x to ver-
sion y is given by the weight on the edge (x, y) in E[Gi]
which is denoted by wi(x, y). A list of the symbols used is

give in Table 1. With these given parameters, we can deter-
mine the profit from caching version j of object i.

Symbol Description
oi,j version j of object i
ri,j the mean reference rate to version j of object i
di the delay of fetching object i from the original

server to the proxy
si,j the size of version j of object i
Gi the corresponding transcoding relation graph of

object i
wi(u, v) the weight on each edge (u, v) inGi

Table 1. A list of the symbols used.

First, we consider the profit from caching a single ver-
sion of an object in the transcoding proxy (i.e., no other
versions are cached). From the standpoint of client users,
an optimal cache replacement algorithm is expected to min-
imize the response time perceived. In other words, an opti-
mal cache replacement algorithm will be designed to max-
imize the delay saving by caching a certain set of Web ob-
jects. Thus, the individual profit from caching version j of
object i is defined in terms of the delay saving obtained as
below.

Definition 2 PF (oi,j) is a function for the individual profit
from caching oi,j while no other version of object i is
cached.

PF (oi,j) =
X

(j,x)∈E[Gi]

ri,x ∗ (di +wi(1, x)−wi(j, x))

(1)

Note in Eq. (1), each (j, x) ∈ E[Gi] represents each
transcodable version from version j to version x. Expres-
sion di + wi(1, x) represents the delay if oi,j is not cached
(i.e., the delay of fetching object i from the original server
plus the delay of transcoding from the original version to
version x). On the other hand, wi(j, x) represents the de-
lay if oi,j is cached. Thus, di + wi(1, x) − wi(j, x) is the
delay saving from caching oi,j in terms of the subsequent
references to oi,x. Consider the scenario in Figure 4 for ex-
ample. Suppose we would like to calculate the individual
profit from caching version 2 of object i. The transcodable
versions from version 2 is pointed by bold arrows in Fig-
ure 4. Without caching version 2, the transcoding proxy
has to fetch object i from the original server and to perform
transcoding to satisfy the subsequent references to versions
2, 3 or 4. The delays for them in this circumstance are all
equal to 30. On the other hand, with caching version 2,



the transcoding proxy only has to perform transcoding from
version 2 to versions 2, 3 or 4 to satisfy the subsequent refer-
ences to them with the corresponding delays being 0, 8 and
8 respectively. Thus, the delay saving from caching version
2 is 30 = 30−0 for each reference to version 2, 22 = 30−8
for each reference to version 3, and also 22 = 30 − 8 for
each reference to version 4. Multiplying the delay savings
by the reference rates, we can get the individual profit from
caching version 2. In this example, suppose the reference
rates to versions 1, 2, 3 and 4 are all equal to 10. The delay
saving from caching version 2 of object i is thus equal to
740 (i.e., 10 ∗ 30 + 10 ∗ 22 + 10 ∗ 22 = 740).
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Figure 4. An example illustrating Definition 1.

As a matter of fact, however, the transcoding proxy may
cache two or more versions of an object at the same time
if the aggregate profit from caching them together is valu-
able. However, as pointed out in Section 1, the aggregate
profit depends on the transcoding relationship among dif-
ferent versions of an object. Hence, we shall devise a pro-
cedure, Procedure MATC (standing for Minimal Aggregate
Transcoding Cost), to find a subgraph G0i ⊆ Gi that shows
the transcoding relationship which maximizes the aggregate
profit when caching two or more versions of an object at the
same time.

Procedure MATC(G, w, C)
1 A←− ∅
2 for each vertex u ∈ C
3 do color[u]←− GRAY
4 for each vertex v ∈ V [G]
5 do for each (x, v) ∈ E[G] and color[x] = GRAY
6 do find the minimum w(x, v)
7 A←− A ∪ (x, v)
8 return G0(V [G], A)

The input of Procedure MATC consists of 3 arguments in
which G is the corresponding weighted transcoding graph,
w is the weights on the edges in G, and C is the set of

the versions that the transcoding proxy tries to cache. The
operations of Procedure MATC can be best understood by
the example of Figure 5. SupposeG and w are given by the
graph in Figure 3, and the input of C is {1, 2}. As shown
in Figure 5(a), lines 1-3 initialize the set A to the empty set
and color vertex 1 and 2 gray, whereA is the resulting edge
set of the subgraph to be returned. The for loop in lines
4-7 finds, for each vertex v ∈ V [G], the edge (x, v) with
minimum weight w(x, v), and adds (x, v) into A. In our
example, since (1,1) and (2,2) are the only edges pointed
from gray vertexes to themselves, the iterations for vertex 1
and vertex 2 add (1,1) and (2,2) inA as shown in Figure 5(b)
and 5(c) respectively. As shown in Figure 5(d), the iteration
for vertex 3 adds (2,3) inA becausew(2, 3) < w(1, 3). The
iteration for vertex 4 works similarly and adds (2,4) in A
as shown in Figure 5(e), leading to the resulting subgraph
of Procedure MATC in Figure 5(f). It can be verified that
the time complexity of Procedure MATC isO(V E), mainly
contributed by the for loop in lines 4-7.
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Figure 5. The execution of Procedure MATC.

With Procedure MATC, we can thereafter define the ag-
gregate profit from caching multiple versions of an object.

Definition 3 PF (oi,j1, oi,j2, ..., oi,jk) is a function for
the calculation of the aggregate profit from caching
oi,j1, oi,j2, ..., oi,jk at the same time.

PF (oi,j1, oi,j2, ..., oi,jk)

=
X

v∈V [G0]

X
(v,x)∈E[G0]

ri,x ∗ (di +wi(1, x)− wi(v, x))

(2)

where G0 is the resulting subgraph of Procedure MATC(G,
w, {j1, j2,..., jk}).



Following the example in Figure 5 and with the resulting
subgraph in Figure 5(f), the aggregate profit from caching
versions 1 and 2, PF (oi,1, oi,2), can be determined as 940
(i.e., 10∗(20−0)+10∗(20+10−0)+10∗(20+10−8)+
10∗ (20+10− 8) = 940). After the aggregate profit is cal-
culated, we can determine the marginal profit from caching
oi,j , given oi,j1, oi,j2, ..., oi,jk are already cached.

Definition 4 PF (oi,j |oi,j1, oi,j2, ..., oi,jk) is a function for
the calculation of the marginal profit from caching oi,j ,
given oi,j1, oi,j2, ..., oi,jk are already cached where j 6=
j1, j2, ..., jk.

PF (oi,j |oi,j1, ..., oi,jk) = PF (oi,j , oi,j1, ..., oi,jk)

−PF (oi,j1, oi,j2, ..., oi,jk)
From the above example, we can obtain that the marginal

profit from caching version 1, given version 2 is already
cached, is only 200 (i.e., 940 − 740 = 200). Finally, we
can integrate all the profit functions into a generalized profit
function as

PFG(oi,j) =



PF (oi,j)
si,j

if no other version of object
i cached;

PF (oi,j |oi,j1,...,oi,jk)
si,j

if there are other versions
oi,j1, ..., oi,jk cached.


(3)

It is noted that the generalized profit function is further nor-
malized by the size of version j of object i to reflect the
object size factor. The generalized profit function defined
in Eq. (3) explicitly considers the new emerging factors in
the transcoding proxy and the aggregate effect of caching
multiple versions of an object. As such, we can evaluate
the profit from caching a certain version of an object, and
then, in view of the cost model, develop the optimal cache
replacement algorithm.

3.2. Design of Algorithm AE

In Section 3.1, we have formulated the generalized profit
function, PFG. Based on this generalized profit function,
we design algorithm AE in this subsection. The main idea
behind algorithmAE is to first order the objects according to
their values of the generalized profit function, and then se-
lect the object with the highest value, one by one, until there
is not enough space to hold any object more. The objects se-
lected are thus the objects to be cached in the transcoding
proxy, and the rest objects are to be evicted.

Note, however, that some assumptions made in Section
3.1 to facilitate our presentation may have to be relaxed

when an algorithm is designed. First, the mean reference
rates of Web objects are not static but may change as time
advances. This phenomenon is quite common, especially in
a news Web site where the reference rates to the news docu-
ments decrease as time goes by. Second, the mean reference
rates to different Web objects are not independent from one
to another. For instance, if there is a hyperlink from one
Web object to another, the mean reference rates to them are
somewhat dependent. Third, the delays of fetching Web
objects from the original servers are not known a priori. To
address these issues, we shall employ the concept of sliding
average functions [14][18] to practically estimate the run-
ning parameters, di and ri,j , in the transcoding proxy in this
paper. With the estimated running parameters, we can de-
vise the pseudo-code of algorithm AE. Algorithm AE takes
4 arguments as the inputs. C is a priority queue which is
used to hold the objects cached in the transcoding proxy.
The cached objects in C are maintained by a heap data
structure in nondecreasing order according to their values
of the generalized profits. Snow is the accumulated size of
the objects currently cached in the priority queue. oi,1 and
oi,j are the original and transcoded versions to be cached.

Algorithm AE(C, Snow, oi,1, oi,j)
1 insert oi,1 and oi,j into C
2 for each version of object i in C
3 do calculate or revise its generalized profit
4 BuildHeap(C)
5 while Snow > cacheCapacity
6 do exclude the first object om,n from C
7 Snow ←− Snow − sm,n
8 for each version of object m
9 do revise its generalized profits
10 BuildHeap(C)

4. Performance Analysis

In this section, we will evaluate the performance of our
cache replacement algorithm by conducting an event-driven
simulation. The primary goal of performing an event-driven
simulation is to assess the effect on the performance of our
cache replacement algorithm by varying different system
parameters. We will describe the simulation model in Sec-
tion 4.1. The experimental results will be shown in Section
4.2.

4.1. Simulation Model

The simulation model is designed to reflect the system
environment of the transcoding proxy as described in Sec-
tion 2. In the client model, as in [5], we assume that the



mobile appliances can be classified into five classes. That
is, all Web objects could be transcoded to five different ver-
sions by the transcoding proxy to satisfy the users’ need.
Without loss of generality, the sizes of the five versions are
assumed to be 100%, 80%, 60%, 40% and 20% of the orig-
inal object size. Also, we assume a more detailed version
can be transcoded to a less detailed one, and the transcod-
ing delay is determined as the quotient of the object size to
the transcoding rate. The distribution of these five classes
of mobile clients is modeled as a device vector of <15%,
20%, 30%, 20%, 15%>.

Next, we consider the workload of the mobile clients’
requests. We assume that the number of total Web ob-
jects is 1000. The sizes of the objects are lognormally dis-
tributed with the mean value of 15 Kbytes. The popularity
of the Web objects follows a Zipf-like distribution, which is
widely adopted to be a model for real Web traces [3][4][13]
[14]. The default value of parameter α in Zipf-like distribu-
tion is set to be 0.75 with a reference to the analyses of real
Web traces in [4]. As shown in [8][11], small files are much
more frequently referenced than large files. Hence, we as-
sume that there is negative correlation between the object
size and its popularity. Finally, the interarrival time of two
consecutive clients’ requests is modeled by exponential dis-
tribution with the mean value of 0.1 second. As to the model
of the transcoding proxy, we choose the default cache ca-
pacity to be 0.01 ∗ (Pobject size). The delays of fetching
objects from Web servers are given by an exponential distri-
bution. Table 2 provides a summary of the parameters used
in the simulation model.

Parameter Dist./Default value
Number of Web objects 1000
Object size Lognormal (µ = 20)
Object popularity Zipf-like (α = 0.75)
Interarrival time of clients’ requests Exp. (µ = 0.1)
Cache capacity 0.01 ∗ (Pobject size)
Object fetching delay Exp. (µ = 2)
Transcoding rate 20 KB/sec

Table 2. Parameters of the simulation model.

4.2. Experimental Results

Based on the simulation model devised, we implement
a simulator using Microsoft Visual C++ package on IBM
compatible PC with Pentium III 450 CPU and 128 Mbytes
RAM. Each set of the experimental results is obtained by
ten simulation runs with different seeds. The primary per-
formance metric employed in our experiments is the delay

saving ratiowhich is defined as the ratio of total delay saved
from cache hits to the total delay incurred under the circum-
stance without caching. In addition, we also use the exact
hit ratio, the useful hit ratio, and the overall hit ratio as the
secondary performance metrics in our experiments. The ex-
act hit ratio corresponds to the fraction of requests which are
satisfied by the exact versions of the objects cached (i.e., no
transcoding is needed for such requests), whereas the use-
ful hit ratio is the fraction of requests which are satisfied by
the more detailed versions of the objects cached (i.e., ad-
ditional transcoding is required for them). Our yardsticks
are the coverage-based and demand-based extensions to
the traditional LRU and LRUMIN cache replacement algo-
rithms. We denote the coverage-based LRU as LRUCV and
the demand-based LRU as LRUDM. The coverage-based
and demand-based extensions to LRUMIN are denoted as
LRUMIN

CV and LRUMIN
DM respectively. In addition, to under-

stand the benefit of algorithm AE achieved by considering
the aggregate effect, we also compare algorithm AE with
algorithm AE0 where algorithm AE0 is a modified version
of algorithm AE, in which the eviction priorities are deter-
mined by the profit function in Definition 1 instead of the
generalized profit function. Recall that the profit function in
Definition 1 did not consider the aggregate effect in the en-
vironment of transcoding proxy. By comparing algorithm
AE with AE0, the advantage of considering the aggregate
effect can be observed. A list of the symbols used is given
in Table 3.

Symbol Description
LRUCV coverage-based LRU
LRUDM demand-based LRU
LRUMIN

CV coverage-based LRUMIN
LRUMIN

DM demand-based LRUMIN
AE Algorithm AE
AE0 Modified algorithm AE without consideration

of the aggregate effect
γFD The ratio of the mean object fetching delay to

the mean transcoding delay

Table 3. A list of the symbols used.

4.2.1. Impact of Cache Capacity

In the first experiment set, we investigate the perfor-
mance of our cache replacement algorithm by varying the
cache capacity. The simulation results are shown in Figure
6 and Figure 7. As presented in Figure 6, our algorithm out-
performs the other ones in terms of the primary performance
metric, i.e., the delay saving ratio (DSR). Specifically, the
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mean improvements of the delay saving ratios over LRUCV
and LRUDM algorithms are 162.4% and 221.3% respec-
tively, whereas the mean improvements over the LRUMIN

CV
and LRUMIN

DM are 22.4% and 36.4%. The main reason that
the extensions to LRU algorithm did not perform well is that
the LRU algorithm considers neither the sizes of objects nor
the delays of fetching objects from original servers. This
drawback is more severe when it comes to the circumstance
of the transcoding proxy. On the other hand, the advantage
of algorithm AE over LRUMIN

CV and LRUMIN
DM is contributed

by the devised generalized profit function which explicitly
considers the new emerging factors in the environment of
transcoding proxies, especially the aggregate effect when
observing the difference between AE and AE0.

Figure 7 provides more insights of the relationship be-
tween algorithms and performance. Observe that the exact
hit ratios of the demand-based algorithms are higher than
those of the coverage-based algorithms. Conversely, the
useful hit ratios of the coverage-based algorithms are higher

than those of the demand-based algorithms. This can be ex-
plained by the reason that demand-based algorithms always
cache the transcoded versions to avoid repeating transcod-
ing operations, thus leading to higher exact hit ratios. How-
ever, the coverage-based algorithms always cache the orig-
inal versions to provide maximum coverage on subsequent
requests, accounting for the reason that they perform bet-
ter in terms of useful hit ratios. Although algorithm AE is
designed to maximize the DSR rather than the hit ratios, al-
gorithm AE still outperforms others in terms of the overall
hit ratio.

4.2.2. Impact of γFD Ratio

We define the ratio of the mean object fetching delay to
the mean transcoding delay as the γFD ratio. Formally, the
value of γFD can be determined by

γFD =
mean fetching delay

mean object size/transcoding rate
.

The second experiment set examines the performance of our
algorithm by varying the value of γFD. The simulation re-
sults are given in Figure 8 and Figure 9. As shown in Figure
8, the overall hit ratio of each algorithm almost remains the
same for various γFD ratios. This is because all simula-
tion parameters except the mean fetching delay are fixed,
and the mean fetching delay will not affect the overall hit
ratio. However, the delay saving ratio increases as the γFD
ratio increases in Figure 9. In addition, the performance
difference between the coverage-based algorithm and the
demand-based algorithms (e.g. LRUCV and LRUDM) in-
creases at the same time. The former phenomenon is more
intuitive because the delay saving ratio is, of course, af-
fected by the mean fetching delay. We explain the latter
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phenomenon as follows. The delay saving ratio is con-
tributed by cache hits which can be classified into exact
cache hits and useful cache hits. Although the ratios of
exact and useful cache hits do not change by γFD ratio,
the weights of their contribution to DSR do change. When
the γFD ratio is small, the delay incurred by the transcod-
ing is more significant than the delay incurred by fetching
from the original server. In other words, the contribution of
the exact hit ratio is more weighted than that of the useful
hit ratio. Thus, the demand-based algorithm which avoids
repeating transcoding operations performs relatively well.
The situation is reversed when the value of the γFD ratio is
large. Unlike either the demand-based algorithms which
maximize the exact hit ratio or the coverage-based ones
which maximize the useful hit ratio, algorithm AE deals
with the caching problem of transcoding proxies in a com-
prehensive way. Consequently, the performance of algo-
rithm AE remains robust against various values of γFD.

5. Conclusions

In this paper, we developed an efficient cache replace-
ment algorithm for transcoding proxies. We formulated
a generalized profit function to evaluate the profit from
caching each version of object. Based on the weighted
transcoding graph and the generalized profit function, we
proposed algorithm AE as the new cache replacement algo-
rithm for transcoding proxies. Using an event-driven sim-
ulation, we showed that algorithm AE consistently outper-
forms companion schemes in terms of the delay saving ra-
tios and cache hit ratios.
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