
Sliding-Window Filtering: An Efficient Algorithm for
Incremental Mining

Chang-Hung Lee, Cheng-Ru Lin, and Ming-Syan Chen
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan, ROC

E-mail: mschen@cc.ee.ntu.edu.tw, {chlee, owenlin}@arbor.ee.ntu.edu.tw

ABSTRACT
We explore in this paper an effective sliding-window filtering
(abbreviatedly as SWF) algorithm for incremental mining of
association rules. In essence, by partitioning a transaction
database into several partitions, algorithm SWF employs a
filtering threshold in each partition to deal with the can-
didate itemset generation. Under SWF, the cumulative in-
formation of mining previous partitions is selectively carried
over toward the generation of candidate itemsets for the sub-
sequent partitions. Algorithm SWF not only significantly
reduces I/O and CPU cost by the concepts of cumulative fil-
tering and scan reduction techniques but also effectively con-
trols memory utilization by the technique of sliding-window
partition. Algorithm SWF is particularly powerful for effi-
cient incremental mining for an ongoing time-variant trans-
action database. By utilizing proper scan reduction tech-
niques, only one scan of the incremented dataset is needed by
algorithm SWF. The I/O cost of SWF is, in orders of mag-
nitude, smaller than those required by prior methods, thus
resolving the performance bottleneck. Experimental studies
are performed to evaluate performance of algorithm SWF. It
is noted that the improvement achieved by algorithm SWF
is even more prominent as the incremented portion of the
dataset increases and also as the size of the database in-
creases.

Keywords
Data mining, association rules, time-variant database, in-
cremental mining

1. INTRODUCTION
The importance of data mining is growing at rapid pace

recently. Analysis of past transaction data can provide very
valuable information on customer buying behavior, and busi-
ness decisions. In essence, it is necessary to collect and ana-
lyze a sufficient amount of sales data before any meaningful

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

data for 1/2000

data for 2/2000

data for 12/2000

data for 1/2001

dbi, j

P i+ 1

P j

P j+ 1

dbi+ 1, j+ 1

P i

Figure 1: Incremental mining for an ongoing time-
variant transaction database.

conclusion can be drawn therefrom. Since the amount of
these processed data tends to be huge, it is important to
devise efficient algorithms to conduct mining on these data.
Mining association rules was first introduced in [2], where
it was shown that the problem of mining association rules
is composed of the following two subproblems: (1) discover-
ing the frequent itemsets, i.e., all sets of itemsets that have
transaction support above a pre-determined minimum sup-
port s, and (2) using the frequent itemsets to generate the
association rules for the database. The overall performance
of mining association rules is in fact determined by the first
subproblem. After the frequent itemsets are identified, the
corresponding association rules can be derived in a straight-
forward manner [2]. Among others, Apriori [2], DHP [16],
and partition-based ones [15, 19] are proposed to solve the
first subproblem efficiently. In addition, several novel min-
ing techniques, including TreeProjection [1], FP-tree [11, 12,
18], and constraint-based ones [10, 14, 17, 23, 24] also re-
ceived a significant amount of research attention.
Recent important applications have called for the need of

incremental mining. This is due to the increasing use of
the record-based databases whose data are being continu-
ously added. Examples of such applications include Web log
records, stock market data, grocery sales data, transactions
in electronic commerce, and daily weather/traffic records, to
name a few. In many applications, we would like to mine the
transaction database for a fixed amount of most recent data
(say, data in the last 12 months). That is, in the incremen-
tal mining, one has to not only include new data (i.e., data
in the new month) into, but also remove the old data (i.e.,
data in the most obsolete month) from the mining process.

Consider the example transaction database in Figure 1.
Note that dbi,j is the part of the transaction database formed
by a continuous region from partition Pi to partition Pj .
Suppose we have conducted the mining for the transaction
database dbi,j . As time advances, we are given the new data
of January of 2001, and are interested in conducting an in-
cremental mining against the new data. Instead of taking
all the past data into consideration, our interest is limited
to mining the data in the last 12 months. As a result,
the mining of the transaction database dbi+1,j+1 is called
for. Note that since the underlying transaction database
has been changed as time advances, some algorithms, such
as Apriori, may have to resort to the regeneration of can-
didate itemsets for the determination of new frequent item-
sets, which is, however, very costly even if the incremental
data subset is small. On the other hand, while FP-tree-
based methods [11, 18] are shown to be efficient for small
databases, it is expected that their deficiency of memory
overhead due to the need of keeping a portion of database
in memory, as indicated in [13], could become more severe in
the presence of a large database upon which an incremental
mining process is usually performed.
To the best of our knowledge, there is little progress made

thus far to explicitly address the problem of incremental
mining except noted below. In [8], the FUP algorithm up-
dates the association rules in a database when new transac-
tions are added to the database. Algorithm FUP is based
on the framework of Apriori and is designed to discover the
new frequent itemsets iteratively. The idea is to store the
counts of all the frequent itemsets found in a previous min-
ing operation. Using these stored counts and examining the
newly added transactions, the overall count of these can-
didate itemsets are then obtained by scanning the original
database. An extension to the work in [8] was reported in
[9] where the authors propose an algorithm FUP2 for up-
dating the existing association rules when transactions are
added to and deleted from the database. In essence, FUP2
is equivalent to FUP for the case of insertion, and is, how-
ever, a complementary algorithm of FUP for the case of
deletion. It is shown in [9] that FUP2 outperforms Apri-
ori algorithm which, without any provision for incremental
mining, has to re-run the association rule mining algorithm
on the whole updated database. Another FUP-based algo-
rithm, call FUP2H, was also devised in [9] to utilize the hash
technique for performance improvement. Furthermore, the
concept of negative borders in [21] and that of UWEP, i.e.,
update with early pruning, in [4] are utilized to enhance the
efficiency of FUP-based algorithms.
However, as will be shown by our experimental results,

the above mentioned FUP-based algorithms tend to suffer
from two inherent problems, namely (1) the occurrence of a
potentially huge set of candidate itemsets, and (2) the need
of multiple scans of database. First, consider the problem
of a potentially huge set of candidate itemsets. Note that
the FUP-based algorithms deal with the combination of two
sets of candidate itemsets which are independently gener-
ated, i.e., from the original data set and the incremental
data subset. Since the set of candidate itemsets includes all
the possible permutations of the elements, FUP-based algo-
rithms may suffer from a very large set of candidate itemsets,
especially from candidate 2-itemsets. More importantly, in
many applications, one may encounter new itemsets in the
incremented dataset. While adding some new products in

the transaction database, FUP-based algorithms will need
to resort to multiple scans of database. Specifically, in the
presence of a new frequent itemset Lk generated in the data
subset, k scans of the database are needed by FUP-based
algorithms in the worst case. That is, the case of k = 8
means that the database has to be scanned 8 times, which
is very costly, especially in terms of I/O cost. The problem
of a large set of candidate itemsets will hinder an effective
use of the scan reduction technique [16] by an FUP-based
algorithm.
To remedy these problems, we shall devise in this paper

an algorithm based on sliding-window filtering (abbreviat-
edly as SWF) for incremental mining of association rules. In
essence, by partitioning a transaction database into several
partitions, algorithm SWF employs a filtering threshold in
each partition to deal with the candidate itemset genera-
tion. For ease of exposition, the processing of a partition is
termed a phase of processing. Under SWF, the cumulative
information in the prior phases is selectively carried over to-
ward the generation of candidate itemsets in the subsequent
phases. After the processing of a phase, algorithm SWF
outputs a cumulative filter, denoted by CF , which consists
of a progressive candidate set of itemsets, their occurrence
counts and the corresponding partial support required. As
will be seen, the cumulative filter produced in each process-
ing phase constitutes the key component to realize the incre-
mental mining. An illustrative example for the operations of
SWF is presented in Section 3.1 and a detailed description
of algorithm SWF is given in Section 3.2. It will be seen
that algorithm SWF proposed has several important ad-
vantages. First, with employing the prior knowledge in the
previous phase, SWF is able to reduce the amount of candi-
date itemsets efficiently which in turn reduces the CPU and
memory overhead. The second advantage of SWF is that
owing to the small number of candidate sets generated, the
scan reduction technique [16] can be applied efficiently. As a
result, only one scan of the ongoing time-variant database is
required. As will be validated by our experimental results,
this very advantage of SWF enables SWF to significantly
outperform FUP-based algorithms. The third advantage of
SWF is the capability of SWF to avoid the data skew in na-
ture. As mentioned in [15], such instances as severe whether
conditions may cause the sales of some items to increase
rapidly within a short period of time. The performance of
SWF will be less affected by the data skew since SWF em-
ploys the cumulative information for pruning false candidate
itemsets in the early stage.
Extensive experiments are performed to assess the per-

formance of SWF. As shown in the experimental results,
SWF produces a significantly smaller amount of candidate
2-itemsets than prior algorithms. In fact, the number of
the candidate itemsets Cks generated by SWF approaches
to its theoretical minimum, i.e., the number of frequent k-
itemsets, as the value of the minimal support increases. It is
shown by our experiments that SWF in general significantly
outperforms FUP-based algorithms. Explicitly, the execu-
tion time of SWF is, in orders of magnitude, smaller than
those required by prior algorithms. Sensitivity analysis on
various parameters of the database is also conducted to pro-
vide many insights into algorithm SWF. The advantage of
SWF becomes even more prominent not only as the amount
of incremented dataset increases but also as the size of the
database increases.

The rest of this paper is organized as follows. Prelimi-
naries and related works are given in Section 2. Algorithm
SWF is described in Section 3. Performance studies on
various schemes are conducted in Section 4. This paper
concludes with Section 5.

2. PRELIMINARIES
Let I={i1, i2, ..., im} be a set of literals, called items. Let

D be a set of transactions, where each transaction T is a set
of items such that T ⊆ I. Note that the quantities of items
bought in a transaction are not considered, meaning that
each item is a binary variable representing if an item was
bought. Each transaction is associated with an identifier,
called TID. Let X be a set of items. A transaction T is said
to contain X if and only if X ⊆ T . An association rule is an
implication of the form X =⇒ Y , where X ⊂ I, Y ⊂ I and
X
T
Y = φ. The rule X =⇒ Y holds in the transaction set

D with confidence c if c% of transactions in D that contain
X also contain Y . The rule X =⇒ Y has support s in the
transaction set D if s% of transactions in D contain X

S
Y.

For a given pair of confidence and support thresholds, the
problem of mining association rules is to find out all the
association rules that have confidence and support greater
than the corresponding thresholds. This problem can be
reduced to the problem of finding all frequent itemsets for
the same support threshold [2].
Most of the previous studies, including those is [2, 5, 8,

16, 20, 22], belong to Apriori-like approaches. Basically, an
Apriori-like approach is based on an anti-monotone Apriori
heuristic [2], i.e., if any itemset of length k is not frequent
in the database, its length (k + 1) super-itemset will never
be frequent. The essential idea is to iteratively generate the
set of candidate itemsets of length (k + 1) from the set of
frequent itemsets of length k (for k ≥ 1), and to check their
corresponding occurrence frequencies in the database. As a
result, if the largest frequent itemset is a j-itemset, then an
Apriori-like algorithm may need to scan the database up to
(j + 1) times.
In Apriori-like algorithms, C3 is generated from L2?L2. In

fact, a C2 can be used to generate the candidate 3-itemsets.
This technique is referred to as scan reduction in [6]. Clearly,
a C 0

3 generated from C2 ? C2, instead of from L2 ? L2, will
have a size greater than |C3| where C3 is generated from
L2 ? L2. However, if |C03| is not much larger than |C3|, and
both C2 and C3 can be stored in main memory, we can
find L2 and L3 together when the next scan of the database
is performed, thereby saving one round of database scan.
It can be seen that using this concept, one can determine
all Lks by as few as two scans of the database (i.e., one
initial scan to determine L1 and a final scan to determine
all other frequent itemsets), assuming that C0k for k ≥ 3 is
generated from C0k−1 and all C

0
k for k > 2 can be kept in the

memory. In [7], the technique of scan-reduction was utilized
and shown to result in prominent performance improvement.

3. SWF: INCREMENTAL MINING WITH
SLIDING-WINDOW FILTERING

In essence, by partitioning a transaction database into sev-
eral partitions, algorithm SWF employs a filtering threshold
in each partition to deal with the candidate itemset gen-
eration. As described earlier, under SWF, the cumulative
information in the prior phases is selectively carried over to-

t 1 A B C
△

－ P 1 t 2 A F
t 3 A B C E
t 4 A B D E

d b 1 ,3 P 2 t 5 C F
D － t 6 A B C D

t 7 B C E
P 3 t 8 A C F d b 2 ,4

t 9 B D E
t 1 0 B D E F

△
+ P 4 t 1 1 D E F

t 1 2 A C

Figure 2: An illustrative transaction database

ward the generation of candidate itemsets in the subsequent
phases. In the processing of a partition, a progressive candi-
date set of itemsets is generated by SWF. Explicitly, a pro-
gressive candidate set of itemsets is composed of the follow-
ing two types of candidate itemsets, i.e., (1) the candidate
itemsets that were carried over from the previous progressive
candidate set in the previous phase and remain as candidate
itemsets after the current partition is taken into consider-
ation (Such candidate itemsets are called type α candidate
itemsets); and (2) the candidate itemsets that were not in
the progressive candidate set in the previous phase but are
newly selected after only taking the current data partition
into account (Such candidate itemsets are called type β can-
didate itemsets). As such, after the processing of a phase,
algorithm SWF outputs a cumulative filter, denoted by CF ,
which consists of a progressive candidate set of itemsets,
their occurrence counts and the corresponding partial sup-
port required. With these design considerations, algorithm
SWF is shown to have very good performance for incremen-
tal mining. In Section 3.1, an illustrative example of SWF is
presented. A detailed description of algorithm SWF is given
in Section 3.2.

3.1 An example of incrementalminingbySWF
Algorithm SWF proposed can be best understood by the

illustrative transaction database in Figure 2 and Figure 3
where a scenario of generating frequent itemsets from a
transaction database for the incremental mining is given.
The minimum transaction support is assumed to be s =
40%. Without loss of generality, the incremental mining
problem can be decomposed into two procedures:
1. Preprocessing procedure: This procedure deals

with mining on the original transaction database.
2. Incremental procedure: The procedure deals with

the update of the frequent itemsets for an ongoing time-
variant transaction database.

The preprocessing procedure is only utilized for the ini-
tial mining of association rules in the original database, e.g.,
db1,n. For the generation of mining association rules in
db2,n+1, db3,n+2, dbi,j , and so on, the incremental proce-
dure is employed. Consider the database in Figure 2. As-
sume that the original transaction database db1,3 is seg-
mented into three partitions, i.e., {P1, P2, P3}, in the pre-

C 2 sta rt c o u n t C 2 s ta rt c o u n t C 2 s ta rt c o u n t
○ A B 1 2 ○ A B 1 4 ○ A B 1 4
○ A C 1 2 ○ A C 1 3 ○ A C 1 4

A E 1 1 ○ A D 2 2 A D 2 2
A F 1 1 ○ B C 1 3 A F 3 1

○ B C 1 2 ○ B D 2 2 ○ B C 1 4
B E 1 1 B E 2 1 ○ B D 2 3
C E 1 1 C D 2 1 ○ B E 3 2

C F 2 1 C E 3 1
D E 2 1 C F 3 1

D E 3 1

C 2 sta rt c o u n t C 2 s ta rt c o u n t
A B 2 2 A C 4 1
A C 2 2 ○ B D 2 4
B C 2 2 ○ B E 3 3

○ B D 2 3 B F 4 1
○ B E 3 2 ○ D E 4 2

○ D F 4 2
○ E F 4 2

{ A } , { B } , { C } , {D } , { E } , {F } , { B D } , {B E } , { D E }

d b 1 ,3 － △ － = D－ D － + △ + = d b 2 ,4

C a n d id a te s in d b 1 ,3 :
{ A } , { B } , { C } , {D } , { E } , {F } , { B D } , {B E } , { D E } , { D F } , { E F } , { B D E } , {D E F }
L a rg e I tem se ts in d b 2 ,4 :

{ A } , { B } , { C } , {D } , { E } , {F } , { A B } , {A C } , { B C } , { B D } , {B E } , { A B C }
L a rg e I tem se ts in d b 1 ,3 :
{ A } , { B } , { C } , {D } , { E } , {F } , { A B } , {A C } , { B C } , { B E }

P 1 P 2 P 3

C a n d id a te s in d b 1 ,3 :

Figure 3: Large itemsets generation for the incre-
mental mining with SWF

processing procedure. Each partition is scanned sequentially
for the generation of candidate 2-itemsets in the first scan
of the database db1,3. After scanning the first segment of
3 transactions, i.e., partition P1, 2-itemsets {AB, AC, AE,
AF, BC, BE, CE} are generated as shown in Figure 3. In
addition, each potential candidate itemset c ∈ C2 has two
attributes: (1) c.start which contains the identity of the
starting partition when c was added to C2, and (2) c.count
which contains the number of occurrences of c since c was
added to C2. Since there are three transactions in P1, the
partial minimal support is d3 ∗ 0.4e = 2. Such a partial
minimal support is called the filtering threshold in this pa-
per. Itemsets whose occurrence counts are below the filter-
ing threshold are removed. Then, as shown in Figure 3, only
{AB, AC, BC}, marked by “°”, remain as candidate item-
sets (of type β in this phase since they are newly generated)
whose information is then carried over to the next phase of
processing.
Similarly, after scanning partition P2, the occurrence counts

of potential candidate 2-itemsets are recorded (of type α and
type β). From Figure 3, it is noted that since there are also
3 transactions in P2, the filtering threshold of those item-
sets carried out from the previous phase (that become type
α candidate itemsets in this phase) is d(3 + 3) ∗ 0.4e = 3
and that of newly identified candidate itemsets (i.e., type β
candidate itemsets) is d3 ∗ 0.4e = 2. It can be seen from
Figure 3 that we have 5 candidate itemsets in C2 after the
processing of partition P2, and 3 of them are type α and 2
of them are type β.
Finally, partition P3 is processed by algorithm SWF . The

resulting candidate 2-itemsets are C2 = {AB, AC, BC, BD,
BE} as shown in Figure 3. Note that though appearing in
the previous phase P2, itemset {AD} is removed from C2
once P3 is taken into account since its occurrence count does

not meet the filtering threshold then, i.e., 2 < 3. However,
we do have one new itemset, i.e., BE, which joins the C2
as a type β candidate itemset. Consequently, we have 5
candidate 2-itemsets generated by SWF, and 4 of them are
of type α and one of them is of type β. Note that instead
of 15 candidate itemsets that would be generated if Apriori
were used1 , only 5 candidate 2-itemsets are generated by
SWF .
After generating C2 from the first scan of database db1,3,

we employ the scan reduction technique and use C2 to gen-
erate Ck (k = 2, 3, ..., n), where Cn is the candidate last -
itemsets. It can be verified that a C2 generated by SWF can
be used to generate the candidate 3-itemsets and its sequen-
tial C0k−1 can be utilized to generate C

0
k. Clearly, a C

0
3 gen-

erated from C2 ?C2, instead of from L2 ?L2, will have a size
greater than |C3| where C3 is generated from L2 ?L2. How-
ever, since the |C2| generated by SWF is very close to the
theoretical minimum, i.e., |L2|, the |C03| is not much larger
than |C3|. Similarly, the |C0k| is close to |Ck|. All C0k can be
stored in main memory, and we can find Lk (k = 1, 2, ..., n)
together when the second scan of the database db1,3 is per-
formed. Thus, only two scans of the original database db1,3

are required in the preprocessing step. In addition, instead
of recording all Lks in main memory, we only have to keep
C2 in main memory for the subsequent incremental mining
of an ongoing time variant transaction database.

dbi,j Partition_database (D) from Pi to Pj
s Minimum support required
|Pk| Number of transactions in partition Pk
Npk (I) Trans. No. in Pk that contain itemset I
|db1,n(I)| Trans. No. in db1,n that contain itemset I
Ci,j The progressive candidate sets of dbi,j

∆− The deleted portion of an ongoing database
D− The unchanged portion of an ongoing database
∆+ The added portion of an ongoing database

Table 1: Meanings of symbols used

The merit of SWF mainly lies in its incremental proce-
dure. As depicted in Figure 3, the mining database will
be moved from db1,3 to db2,4. Thus, some transactions, i.e.,
t1, t2, and t3, are deleted from the mining database and other
transactions, i.e., t10, t11, and t12, are added. For ease of ex-
position, this incremental step can also be divided into three
sub-steps: (1) generating C2 in D− = db1,3−∆−, (2) gener-
ating C2 in db2,4 = D−+∆+ and (3) scanning the database
db2,4 only once for the generation of all frequent itemsets Lk.
In the first sub-step, db1,3 − ∆− = D−, we check out the
pruned partition P1, and reduce the value of c.count and set
c.start = 2 for those candidate itemsets c where c.start = 1.
It can be seen that itemsets {AB, AC, BC} were removed.
Next, in the second sub-step, we scan the incremental trans-
actions in P4. The process in D− + ∆+ = db2,4 is similar
to the operation of scanning partitions, e.g., P2, in the pre-
processing step. Three new itemsets, i.e., DE, DF, EF, join
the C2 after the scan of P4 as type β candidate itemsets.
Finally, in the third sub-step, we use C2 to generate C0k as
mentioned above. With scanning db2,4 only once, SWF ob-

1The details of the execution procedure by Apriori are omit-
ted here. Interested readers are referred to [3].

tains frequent itemsets {A, B, C, D, E, F, BD, BE, DE} in
db2,4.

3.2 Algorithm of SWF
For ease exposition, the meanings of various symbols used

are given in Table 1. The preprocessing procedure and the
incremental procedure of algorithm SWF are described in
Section 3.2.1 and Section 3.2.2, respectively.

3.2.1 Preprocessing procedure of SWF
The preprocessing procedure of Algorithm SWF is out-

lined below. Initially, the database db1,n is partitioned into
n partitions by executing the preprocessing procedure (in
Step 2), and CF, i.e., cumulative filter, is empty (in Step
3). Let Ci,j

2 be the set of progressive candidate 2-itemsets
generated by database dbi,j . It is noted that instead of keep-
ing Lks in the main memory, algorithm SWF only records
C1,n2 which is generated by the preprocessing procedure to
be used by the incremental procedure.

Preprocessing procedure of Algorithm SWF
1. n = Number of partitions;
2. |db1,n| =Pk=1,n |Pk|;
3. CF = ∅;
4. begin for k = 1 to n // 1st scan of db1,n

5. begin for each 2-itemset I ∈ Pk
6. if (I /∈ CF)
7. I.count = Npk(I);
8. I.start = k;
9. if (I.count ≥ s ∗ |Pk|)
10. CF = CF ∪ I ;
11. if (I ∈ CF)
12. I.count = I.count+Npk(I);
13. if (I.count < ds ∗Pm=I.start,k |Pm|e)
14. CF = CF − I;
15. end
16. end
17. select C1,n2 from I where I ∈ CF ;
18. keep C1,n

2 in main memory;
19. h = 2; //C1 is given
20. begin while (C1,nh 6= ∅) //Database scan reduction
21. C1,nh+1 = C

1,n
h ? C1,nh ;

22. h = h+ 1;
23. end
24. refresh I.count = 0 where I ∈ C1,nh ;
25. begin for k = 1 to n //2nd scan of db1,n

26. for each itemset I ∈ C1,nh
27. I.count = I.count+Npk (I);
28. end
29. for each itemset I ∈ C1,nh
30. if (I.count ≥ ds ∗ |db1,n|e)
31. Lh = Lh ∪ I ;
32. end
33. return Lh;

From Step 4 to Step 16, the algorithm processes one par-
tition at a time for all partitions. When partition Pi is pro-
cessed, each potential candidate 2-itemset is read and saved
to CF. The number of occurrences of an itemset I and its
starting partition are recorded in I.count and I.start, re-
spectively. An itemset, whose I.count ≥ ds∗Pm=I.start,k |Pm|e,
will be kept in CF. Next, we select C1,n2 from I where I ∈ CF
and keep C1,n

2 in main memory for the subsequent incremen-
tal procedure. With employing the scan reduction technique

from Step 19 to Step 23, C1,nh s (h ≥ 3) are generated in main
memory. After refreshing I.count = 0 where I ∈ C1,nh , we
begin the last scan of database for the preprocessing proce-
dure from Step 25 to Step 28. Finally, those itemsets whose
I.count ≥ ds ∗ |db1,n|e are the frequent itemsets.
3.2.2 Incremental procedure of SWF
As shown in Table 1, D− indicates the unchanged portion

of an ongoing transaction database. The deleted and added
portions of an ongoing transaction database are denoted by
4− and 4+, respectively. It is worth mentioning that the
sizes of 4+ and 4−, i.e., | 4+ | and | 4− | respectively, are
not required to be the same. The incremental procedure of
SWF is devised to maintain frequent itemsets efficiently and
effectively. This procedure is outlined below.

Incremental procedure of Algorithm SWF
1. Original database = dbm,n;
2. New database = dbi,j ;
3. Database removed 4− =

P
k=m,i−1 Pk;

4. Database database 4+ =
P

k=n+1,j Pk;
5. D− =

P
k=i,n Pk;

6. dbi,j = dbm,n −4− +4+;
7. loading Cm,n2 of dbm,n into CF where I ∈ Cm,n2 ;
8. begin for k = m to i− 1 // one scan of 4−

9. begin for each 2-itemset I ∈ Pk
10. if (I ∈ CF and I.start ≤ k)
11. I.count = I.count−Npk (I);
12. I.start = k + 1;
13. if (I.count < ds ∗Pm=I.start,n |Pm|e)
14. CF = CF − I ;
15. end
16. end
17. begin for k = n+ 1 to j // one scan of 4+

18. begin for each 2-itemset I ∈ Pk
19. if (I /∈ CF)
20. I.count = Npk (I);
21. I.start = k;
22. if (I.count ≥ s ∗ |Pk|)
23. CF = CF ∪ I;
24. if (I ∈ CF)
25. I.count = I.count+Npk (I);
26. if (I.count < ds ∗Pm=I.start,k |Pm|e)
27. CF = CF − I ;
28. end
29. end
30. select Ci,j2 from I where I ∈ CF ;
31. keep Ci,j2 in main memory
32. h = 2 //C1 is well known.
33. begin while (Ci,jh 6= ∅) //Database scan reduction
34. Ci,jh+1 = C

i,j
h ? Ci,jh ;

35. h = h+ 1;
36. end
37. refresh I.count = 0 where I ∈ Ci,jh ;
38. begin for k = i to j //only one scan of dbi,j

39. for each itemset I ∈ Ci,jh
40. I.count = I.count+Npk(I);
41. end
42. for each itemset I ∈ Ci,jh
43. if (I.count ≥ ds ∗ |dbi,j |e)
44. Lh = Lh ∪ I ;
45. end
46. return Lh;

As mentioned before, this incremental step can also be
divided into three sub-steps: (1) generating C2 in D− =
db1,3 − ∆−, (2) generating C2 in db2,4 = D− + ∆+ and
(3) scanning the database db2,4 only once for the genera-
tion of all frequent itemsets Lk. Initially, after some up-
date activities, old transactions 4− are removed from the
database dbm,n and new transactions 4+ are added (in Step
6). Note that 4− ⊂ dbm,n. Denote the updated database
as dbi,j . Note that dbi,j = dbm,n − 4− + 4+. We de-
note the unchanged transactions by D− = dbm,n − ∆− =
dbi,j − ∆+. After loading Cm,n2 of dbm,n into CF where
I ∈ Cm,n2 , we start the first sub-step, i.e., generating C2
in D− = dbm,n −∆−. This sub-step tries to reverse the cu-
mulative processing which is described in the preprocessing
procedure. From Step 8 to Step 16, we prune the occur-
rences of an itemset I, which appeared before partition Pi,
by deleting the value I.count where I ∈ CF and I.start < i.
Next, from Step 17 to Step 36, similarly to the cumulative
processing in Section 3.2.1, the second sub-step generates
new potential Ci,j2 in dbi,j = D− + 4+ and employs the
scan reduction technique to generate Ci,jh s from Ci,j2 . Fi-
nally, to generate new Lks in the updated database, we scan
dbi,j for only once in the incremental procedure to maintain
frequent itemsets. Note that Ci,j2 is kept in main memory
for the next generation of incremental mining.
Note that SWF is able to filter out false candidate itemsets

in Pi with a hash table. Same as in [16], using a hash table
to prune candidate 2-itemsets, i.e., C2, in each accumulative
ongoing partition set Pi of transaction database, the CPU
and memory overhead of SWF can be further reduced.

|D| Transaction No. in the database
|∆+| The added transaction No.
|∆−| The deleted transaction No.
|d| The incremental transaction No.
|T | Average size of the transactions
|I| Average No. of frequent itemsets
|L| No. of frequent itemsets
N Number of items

Table 2: Meanings of various parameters

4. EXPERIMENTAL STUDIES
To assess the performance of algorithm SWF, we per-

formed several experiments on a computer with a CPU clock
rate of 450 MHz and 512 MB of main memory. The trans-
action data resides in the NTFS file system and is stored on
a 30GB IDE 3.5” drive with a measured sequential through-
put of 10MB/second. The simulation program was coded
in C++. The methods used to generate synthetic data are
described in Section 4.1. The performance comparison of
SWF, FUP2 and Apriori is presented in Section 4.2. Section
4.3 shows the I/O and CPU overhead among SWF, FUP2H
and Apriori. Results on scaleup experiments are presented
in Section 4.4.

4.1 Generation of synthetic workload
For obtaining reliable experimental results, the method to

generate synthetic transactions we employed in this study is
similar to the ones used in prior works [4, 8, 16, 21]. Ex-
plicitly, we generated several different transaction databases
from a set of potentially frequent itemsets to evaluate the

T20-I4-D100-d10

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.1 0.3 0.5 0.7 0.9
M inimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Apriori
FUP2
SW F

T20-I6-D100-d10

0

500

1000

1500

2000

2500

3000

0.1 0.3 0.5 0.7 0 .9
M inimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Appriori
FU P2
SW F

Figure 4: Relative performance

performance of SWF. These transactions mimic the transac-
tions in the retailing environment. Note that the efficiency of
algorithm SWF has been evaluated by some real databases,
such as Web log records and grocery sales data. However,
we show the experimental results from synthetic transaction
data so that the work relevant to data cleaning, which is in
fact application-dependent and also orthogonal to the in-
cremental technique proposed, is hence omitted for clarity.
Further, more sensitivity analysis can then be conducted by
using the synthetic transaction data. Each database con-
sists of |D| transactions, and on the average, each trans-
action has |T | items. Table 2 summarizes the meanings of
various parameters used in the experiments. The mean of
the correlation level is set to 0.25 for our experiments.
Recall that the sizes of |∆+| and |∆−| are not required

to be the same for the execution of SWF. Without loss of
generality, we set |d| = |∆+| = |∆−| for simplicity. Thus, by
denoting the original database as db1,n and the new mining
database as dbi,j , we have |dbi,j | = |db1,n−∆−+∆+| = |D|,
where ∆− = db1,i−1 and ∆+ = dbn+1,j . In the following, we
use the notation Tx−Iy−Dm−dn to represent a database
in which D = m thousands, d = n thousands, |T | = x, and
|I| = y. We compare relative performance of three methods,
i.e., Apriori, FUP-based algorithms and SWF.
As mentioned before, without any provision for incre-

mental mining, Apriori algorithm has to re-run the associa-
tion rule mining algorithm on the whole updated database.
As reported in [8, 9], with reducing the candidate item-
sets, FUP-based algorithms outperform Apriori. As will be
shown by our experimental results, with the sliding win-
dow technique that carries cumulative information selec-
tively, the execution time of SWF is, in orders of magnitude,
smaller than those required by prior algorithms. In order to

T 1 0 - I4 -D 1 0 0 - d 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

0 .1 0 .3 0 .5 0 .7 0 .9
M in im u m Su p p o r t (%)

I/O
 C

os
t (

M
)

A p r io r i
F U P 2 - H
S W F

Figure 5: I/O cost performance

Candidates Apriori FUP2H SWF Freq. Itemsets
C2 3399528 104145 7482 L2=6656
C3 8353 8353 9241 L3=8135
C4 7882 7882 8679 L4=7616
C5 6762 6382 7162 L5=6077
C6 5437 4709 5578 L6=4658
C7 3918 3417 3951 L7=3412

T10-I4-D100-d10

Figure 6: Reduction on candidate itemsets when the
dataset T10-I4-D100-d10 was used

conduct our experiments on a database of size dbi,j with an
increment of ∆+ and a removal of ∆−, a database of db1,j

is first generated and then db1,i−1, db1,n, dbn+1,j , and dbi,j

are produced separately.

4.2 Experiment one: Relative performance
We first conducted several experiments to evaluate the

relative performance of Apriori, FUP2 and SWF. For inter-
est of space, we only report the results on |L| = 2000 and
N = 10000 in the following experiments. Figure 4 shows
the relative execution times for the three algorithms as the
minimum support threshold is decreased from 1% support to
0.1% support. When the support threshold is high, there are
only a limited number of frequent itemsets produced. How-
ever, as the support threshold decreases, the performance
difference becomes prominent in that SWF significantly out-
performs both FUP2 and Apriori. As shown in Figure 4,
SWF leads to prominent performance improvement for var-
ious sizes of |T |, |I| and |d|. Explicitly, SWF is in orders
of magnitude faster than FUP2, and the margin grows as
the minimum support threshold decreases. Note that from
our experimental results, the difference between FUP2 and
Apriori is consistent with that observed in [9]. In fact, SWF
outperforms FUP2 and Apriori in both CPU and I/O costs,
which are evaluated next.

4.3 Experiment two: Evaluation of I/O and
CPU overhead

To evaluate the corresponding of I/O cost, same as in
[18], we assume that each sequential read of a byte of data
consumes one unit of I/O cost and each random read of

T 10-I4- D 1000-d n

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 25 0 300

|d |, in crem en tal tran sac tio n n u m b er (K)

Ex
ec

ut
io

n
Ti

m
e

Ra
tio

(S
W

F/
FU

P2
)

0 .2%
0.4%

Figure 7: Scaleup performance with the execution
time ratio between SWF and FUP

a byte of data consumes two units of I/O cost. Figure 5
shows the number of database scans and the I/O costs of
Apriori, FUP2H, i.e., hash-type FUP in [9], and SWF over
data sets T10 − I4 − D100 − d10. As shown in Figure 5,
SWF outperforms Apriori and FUP2H where without loss
of generality a hash table of 250 thousand entries is employed
for those methods. Note that the large amount of database
scans is the performance bottleneck when the database size
does not fit into main memory. In view of that, SWF is
advantageous since only one scan of the updated database
is required, which is independent of the variance in minimum
supports.
As explained before, SWF substantially reduces the num-

ber of candidate itemsets generated. The effect is particu-
larly important for the candidate 2-itemsets. The experi-
mental results in Figure 6 show the candidate itemsets gen-
erated by Apriori, FUP2H, and SWF across the whole pro-
cessing on the datasets T10−I4−D100−d10 with minimum
support threshold s = 0.1%. As shown in Figure 6, SWF
leads to a 99% candidate reduction rate in C2 when being
compared to Apriori, and leads to a 93% candidate reduc-
tion rate in C2 when being compared to FUP2H. Similar
phenomena were observed when other datasets were used.
This feature of SWF enables it to efficiently reduce the CPU
and memory overhead. Note that the number of candidate
2-itemsets produced by SWF approaches to its theoretical
minimum, i.e., the number of frequent 2-itemsets. Recall
that the C3 in either Apriori or FUP2H has to be obtained
by L2 due to the large size of their C2. As shown in Fig-
ure 6, the value of |Ck| (k ≥ 3) is only slightly larger than
that of Apriori or FUP2H, even though SWF only employs
C2 to generate Cks, thus fully exploiting the benefit of scan
reduction.

4.4 Experiment three: Scaleup on the incre-
mental portion

To further understand the impact of |d| to the relative per-
formance of algorithms SWF and FUP-based algorithms, we
conduct the scaleup experiments for both SWF and FUP2
with two minimum support thresholds 0.2% and 0.4 %. The
results are shown in Figure 7 where the value in y-axis corre-
sponds to the ratio of the execution time of SWF to that of
FUP2. Figure 7 shows the execution-time-ratio for different
values of |d|. It can be seen that since the size of |d| has less
influence on the performance of SWF, the execution-time-

ratio becomes smaller with the growth of the incremental
transaction number |d|. This also implies that the advan-
tage of SWF over FUP2 becomes even more prominent as
the amount of incremental portion increases.

5. CONCLUSION
We explored in this paper an efficient sliding-window fil-

tering algorithm for incremental mining of association rules.
Algorithm SWF not only significantly reduces I/O and CPU
cost by the concepts of cumulative filtering and scan reduc-
tion techniques but also effectively controls memory utiliza-
tion by the technique of sliding-window partition. Extensive
simulations have been performed to evaluate performance
of algorithm SWF. With proper sampling and partitioning
methods, the technique devised in this paper can be applied
to progressive mining.

Acknowledgment
The authors are supported in part by the Ministry of Educa-
tion Project No. 89-E-FA06-2-4-7 and the National Science
Council, Project No. NSC 89-2219-E-002-028 and NSC 89-
2218-E-002-028, Taiwan, Republic of China.

6. REFERENCES
[1] R. Agarwal, C. Aggarwal, and V.V.V. Prasad. A Tree

Projection Algorithm for Generation of Frequent
Itemsets. Jornal of Parallel and Distributed
Computing (Special Issue on High Performance Data
Mining), 2000.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
Association Rules between Sets of Items in Large
Databases. Proc. of ACM SIGMOD, pages 207—216,
May 1993.

[3] R. Agrawal and R. Srikant. Fast Algorithms for
Mining Association Rules in Large Databases. Proc. of
the 20th International Conference on Very Large Data
Bases, pages 478—499, September 1994.

[4] N.F. Ayan, A.U. Tansel, and E. Arkun. An Efficient
Algorithm to Update Large Itemsets with Early
Pruning. Proc. of 1999 Int. Conf. on Knowledge
Discovery and Data Mining, 1999.

[5] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur.
Dynamic Itemset Counting and Implication Rules for
Market Basket Data. ACM SIGMOD Record,
26(2):255—264, May 1997.

[6] M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An
Overview from Database Perspective. IEEE
Transactions on Knowledge and Data Engineering,
8(6):866—883, December 1996.

[7] M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data
Mining for Path Traversal Patterns. IEEE
Transactions on Knowledge and Data Engineering,
10(2):209—221, April 1998.

[8] D. Cheung, J. Han, V. Ng, and C.Y. Wong.
Maintenance of Discovered Association Rules in Large
Databases: An Incremental Updating Technique.
Proc. of 1996 Int’l Conf. on Data Engineering, pages
106—114, February 1996.

[9] D. Cheung, S.D. Lee, and B. Kao. A General
Incremental Technique for Updating Discovered
Association Rules. Proc. International Conference On

Database Systems For Advanced Applications, April
1997.

[10] J. Han, L. V. S. Lakshmanan, and R. T. Ng.
Constraint-Based, Multidimensional Data Mining.
COMPUTER (special issues on Data Mining), pages
46—50, 1999.

[11] J. Han and J. Pei. Mining Frequent Patterns by
Pattern-Growth: Methodology and Implications. ACM
SIGKDD Explorations (Special Issue on Scaleble Data
Mining Algorithms), December 2000.

[12] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. FreeSpan: Frequent pattern-projected
sequential pattern mining. Proc. of 2000 Int. Conf. on
Knowledge Discovery and Data Mining, pages
355—359, August 2000.

[13] J. Hipp, U. Güntzer, and G. Nakhaeizadeh.
Algorithms for association rule mining — a general
survey and comparison. SIGKDD Explorations,
2(1):58—64, July 2000.

[14] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang.
Optimization of Constrained Frequent Set Queries
with 2-Variable Constraints. Proc. of 1999
ACM-SIGMOD Conf. on Management of Data, pages
157—168, June 1999.

[15] J.-L. Lin and M.H. Dunham. Mining Association
Rules: Anti-Skew Algorithms. Proc. of 1998 Int’l
Conf. on Data Engineering, pages 486—493, 1998.

[16] J.-S. Park, M.-S. Chen, and P. S. Yu. Using a
Hash-Based Method with Transaction Trimming for
Mining Association Rules. IEEE Transactions on
Knowledge and Data Engineering, 9(5):813—825,
October 1997.

[17] J. Pei and J. Han. Can We Push More Constraints
into Frequent Pattern Mining? Proc. of 2000 Int.
Conf. on Knowledge Discovery and Data Mining,
August 2000.

[18] J. Pei, J. Han, and L.V.S. Lakshmanan. Mining
Frequent Itemsets with Convertible Constraints. Proc.
of 2001 Int. Conf. on Data Engineering, 2001.

[19] A. Savasere, E. Omiecinski, and S. Navathe. An
Efficient Algorithm for Mining Association Rules in
Large Databases. Proc. of the 21th International
Conference on Very Large Data Bases, pages 432—444,
September 1995.

[20] R. Srikant and R. Agrawal. Mining Generalized
Association Rules. Proc. of the 21th International
Conference on Very Large Data Bases, pages 407—419,
September 1995.

[21] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An
Efficient Algorithm for the Incremental Updation of
Association Rules in Large Databases. Proc. of 1997
Int. Conf. on Knowledge Discovery and Data Mining,
1997.

[22] H. Toivonen. Sampling Large Databases for
Association Rules. Proc. of the 22th VLDB
Conference, pages 134—145, September 1996.

[23] A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and
R. T. Ng. Constraint-Based Clustering in Large
Databases. Proc. of 2001 Int. Conf. on Database
Theory, January 2001.

[24] K. Wang, Y. He, and J. Han. Mining Frequent
Itemsets Using Support Constraints. Proc. of 2000
Int. Conf. on Very Large Data Bases, September 2000.

