
Clustering Categorical Data by Utilizing the
Correlated-Force Ensemble

Kun-Ta Chuang and Ming-Syan Chen
Graduate Institute of Communication Engineering

National Taiwan University
Taipei, Taiwan, ROC

E-mail: mschen@cc.ee.ntu.edu.tw, doug@arbor.ee.ntu.edu.tw

Abstract
We explore in this paper a novel clustering algo-
rithm, named CORE (standing for CORrelated-Force
Ensemble), for categorical data. In general, it is more
difficult to perform clustering on categorical data than
on numerical data due to the absence of the ordered
property in the former. Though several clustering algo-
rithms which concentrate on categorical date were pro-
posed, acquiring the desirable quality remains a chal-
lenging issue. Note that there is significance hidden in
the correlation between attribute values that can be ex-
plored to aid clustering, especially extracting clusters in
the high dimensional data. Therefore by employing the
concept of correlated-force ensemble, clusters which con-
sist of the highly correlated set of nominal attribute val-
ues, can be acquired by the proposed algorithm, CORE.
As validated by variant real datasets, it is shown in our
experimental results that algorithm CORE significantly
outperforms the prior works.

1 Introduction
Mining on databases has attracted a growing amount of
research attention due to its wide applicability to im-
prove marketing strategies, business management, and
user profile analysis, to name a few [6]. Among others,
data clustering is a well-known capacity studied in many
research communities, e.g., statistical pattern recogni-
tion, machine learning [8], information retrieval [5], and
data mining [16]. In essence, clustering aims to retrieve
the innate groups formed by similar features of cluster
members. Unfortunately, finding optimal clustering re-
sult is known to be an NP-hard problem. Thus cluster-
ing algorithms usually employ some heuristic processes
to find local optimal results. Most clustering techniques
utilize a pairwise similarity for measuring the distance
of two data points. The widely employed examples are
the distance metric, e.g., the Euclidean distance and
the Minkowski distance [16]. By utilizing the inherent

metric property within numerical data, some clustering
algorithms perform very well to find sensible geometric
partitions [13][16]. Recently, researches have been elab-
orated upon the clustering approaches for categorical
data, where categorical data are those whose attribute
values are nominal and unordered, e.g., color and hu-
man hobby. It is noted that difficulties arise in clus-
tering categorical data due to the absence of inherently
ordered property of categorical data. Most clustering
techniques based on the metric distance measure are
thus not applicable to acquire clusters from categorical
data domain.

In view of this, algorithms KModes [15], STIRR
[10], ROCK [14], CACTUS [9] and COOLCAT [2] have
been proposed for clustering categorical data. How-
ever, there are many phenomena existing in the real-
ity yet to be explored, e.g., the curse of high dimen-
sionality [3], noisy reality [17], and the disproportionate
correlation between different attributes. Consider the
weather example shown in Table 1. There are three
categories, Outlook, Temperature and Humidity, which
have distinct value sets {Sunny, Rainy}, {Mild, Cool}
and {Normal, High, Heigh}, respectively. From Table
1, we note the Humidity value of 6-th tuple (i.e., r6)
is deemed noisy because High is wrongly recorded as
Heigh. A noisy data could also be a missing value or an
outlier. Usually, a data cleaning pre-processing work is
utilized to intelligently clean the noisy data [17]. How-
ever a clustering algorithm with the ability to allevi-
ate the interference from noisy values is highly desirable
since the data cleaning work is in general expensive. In
addition, attributes Outlook and Humidity are correl-
ative, e.g., the Sunny outlook usually comes with the
Normal humidity, and the Rainy outlook usually comes
with the High humidity. Such relationship among at-
tributes was not fully explored in most of the previous
works, where all attributes tend to be considered inde-
pendently for clustering.



TID Outlook Temperature Humidity
r1 Sunny Mild Normal
r2 Sunny Mild Normal
r3 Sunny Cool Normal
r4 Rainy Cool High
r5 Rainy Mild High
r6 Rainy Mild Heigh

Table 1: An illustrative example which includes 6
weather records.

In the following, we briefly describe previous works
on clustering categorical data and comment on the prob-
lems they might suffer due to the neglect of the above
mentioned phenomena. Algorithm KModes is designed
as an extension of K-Means algorithm to categorical
data, and thus it has the merit of being efficient and the
drawback of inadequate quality as similar to K-Means
algorithm. In addition, algorithm ROCK is the one of
most outstanding clustering algorithms for categorical
data nowadays. The concept of links is employed in
ROCK, and a link is defined as the number of common
"neighbors" between two tuples. Here two tuples are
said to be the neighbor if their Jaccard-coefficient [16] is
larger than or equal to the user defined threshold θ. By
utilizing the concept of links, algorithm ROCK performs
a hierarchical-based clustering procedure to maximize
the number of links within clusters and minimize the
number of links across different clusters. A similarity
criterion is thus conducted under the assumption that
data is uniformly distributed. Algorithm ROCK with
a good choice of θ usually results in the good quality.
However, the threshold θ is difficult to be determined by
users [2]. Hence the requirement of a prior knowledge of
the data distribution for making appropriate θ needs
further justification in real cases. Moreover, algorithm
ROCK suffers from the problem which arises when data
contains typos, and does not exploit the feature that at-
tributes are correlated because every attribute is viewed
as independent to each other.

On the other hand, algorithms STIRR [10] and
CACTUS [9] consider that clusters are constructed by
a set of distinct categorical values, where each distinct
categorical value is called a node in [10]. The issue
how to cluster tuples is considered as a post-processing
work in these approaches. In this perspective, the
set of nodes within the same cluster should be closely
related. Explicitly, algorithm STIRR is an iterative
algorithm based on non-linear dynamic systems. In
addition, algorithm CACTUS is devised by using a
summarization procedure. This algorithm is achieved
by assuming that all attributes are independent, and a
node pair < ai, aj > is considered strongly connected if
their co-occurring size is larger than or equal to α times

of the expected co-occurring size. Hence, a cluster is
considered as a high-density node set in which each node
pair is strongly connected. It is noted that the advantage
of algorithm CACTUS is emphasized in the abilities
to deal with high dimensional data and to generate
subspace clusters. However, such a cluster definition
requires every node pair to be strongly connected in a
cluster. Consequently, a large number of clusters are
likely to be generated and the cluster number may not
be close to the desired one in the user perspective.
Moreover, as pointed out before, the assumption of
having independent attributes would not be applicable
in practice.

Algorithm COOLCAT [2] and the algorithm con-
ducted in [7] are recently proposed clustering methods
which can deal with categorical data. Both of them
achieve clustering on categorical domain by employing
the entropy analysis. Explicitly, algorithm COOLCAT
is devised as a two-step algorithm, in which a sampled
data S are selected to generate cluster seeds in the first
step and then the remaining data are incrementally al-
located to a suitable cluster in the second step. This
incremental procedure will be appropriate to deal with
streaming-like data. It is noted that algorithm COOL-
CAT is devised under the attribute independence as-
sumption, which, however, may need further justifica-
tion in practice. In addition, high dimension issue and
noisy values are not discussed in the paper.

In view of above observations, we make some re-
marks: (1) Though subspace clusters are more charm-
ing in practice [9], they are difficult to be acquired by
calculating the similarity of tuples in the original tuple
space, e.g., the model used in algorithms ROCK and
KModes. A suitable solution is to transform tuples into
a set of nodes, e.g., the basis model used in algorithm
CACTUS. And further, the correlation between those
nodes can be analyzed to aid extracting the subspace
clustering relationship. (2) By the analysis of the corre-
lation between nodes, the influence of noisy values will
be limited because those noisy values are usually distrib-
uted randomly and thus have a very small correlation
with other values. (3) The assumption that attributes
are independent is not required if clusters can be ex-
tracted from the correlation between nodes rather than
from the relationship between attributes.

With these conclusions, the clustering model by
transforming categorical tuples to the described node
perspective is hence utilized in this paper. Specifically,
each node is deemed as a physical object and their
degree of correlation is viewed as the magnitude of
gravity. The described node perspective is called the
gravity space in this paper. An abstract illustration of
this notion is shown in Figure 1, in which the example in



Normal
High

Heigh

Mild

Cool

Sunny
Rainy

Highly-correlated
node set

low-correlated 
to other nodes

Figure 1: An illustration of transforming tuples to the
gravity space.

Table 1 is transformed to the gravity space. In Figure 1,
nodes agglomerate to each other according to the degree
of their correlation. Specifically, highly-correlated nodes
are close to each other, e.g., nodes Sunny and Normal
are highly-correlated and thus agglomerate together. In
contrast, low-correlated nodes would be far from each
other, e.g., node Heigh is far from other nodes because
the noisy node is low-correlated with other nodes.

A gravity-based clustering procedure is thus devised
according to the described transformation. Specifically,
we classify the correlation of each node pair into two
types, namely, gravitative correlation and repulsive cor-
relation. As such, a cluster similarity measurement is
defined as the ensemble of correlated-forces between
the corresponding two clusters Ci and Cj . Here the
correlated-force between two nodes in two different clus-
ters is calculated according to their gravitative/repulsive
correlation and sizes of the two nodes in their corre-
sponding clusters. In brief, the higher the ensemble
of correlated-forces two clusters have, the more similar
to each other they are. This definition of similarity is
properly employed in the gravity space. A gravity based
clustering method, called algorithm CORE (standing
for CORrelated-Force Ensemble) in this paper, is de-
vised from this criterion to perform subspace clustering
on categorical tuples. Experimental results show that
algorithm CORE outperforms previous algorithms, spe-
cially in the presence of various data distributions in real
datasets.

2 Preliminaries
2.1 Problem description To begin with, the de-
fined symbols are summarized in Table 2. In this
paper, the categorical data is initially represented by
a set of tuples. A dataset of tuples is denoted by
R = {r1, r2, ..., rn}, where each tuple ri consists of a set
of distinct nodes from the attribute set {A1, A2, ..., Ak}.
Note that attribute Ai consists of a distinct node set
{ai1 , ai2 , ..., aij} with j distinct categorical values. Here
we do not differentiate whether two nodes are from the
same attribute or not, and treat every node equally.
Thus each node is denoted by nm, with only one index,

Parameter Description
na The distinct node with index a in the dataset
Rna The tuple set of node na
RCi The tuple set in cluster Ci

Sup(na, Ci) The support count of na in cluster Ci

NCi The distinct node set of cluster Ci

|NCi | The number of distinct nodes in cluster Ci

|R| Number of tuples in the dataset
|Ci| Number of tuples in cluster Ci

|N | Number of distinct nodes in the dataset

Table 2: The symbols defined in the paper.

m, where m is between 1 and
P

1≤i≤k
|Ai|. Here |Ai| is

the number of distinct categorical values of attribute Ai.
Consider the example shown in Table 1, in all there are
7 nodes, {Sunny, Rainy} of attribute Outlook, {Mild,
Cool} of attribute Temperature, {Normal, High, Heigh}
of attribute Humidity, respectively. Hence the integral
index m will be limited in [1,7]. Note that we can ac-
quire the tuple set, Rni , in which each tuple contains
node ni, after one database scan. For example, node
Sunny occurs in r1, r2, and r3 in Table 1, and thus
RSunny is {r1, r2, r3}. In addition, note that a cluster
Ci consists of a set of tuples RCi , and hence we can
transform RCi into the node perspective and get a set
of nodes, NCi :

NCi = {∀na|na occurs in cluster Ci}, and
|NCi | = the size of distinct nodes in cluster Ci.

Here we call this concept as "Nodeize" in this paper
to convey the concept that categorical tuples are trans-
formed to the gravity space. We will illustrate the detail
in Section 2.3.

In the following, we present several preliminary
definitions to facilitate our discussions.
Definition 1 (The correlation between nodes na and
nb):

The correlation between nodes na and nb is defined
as:

Corr(na, nb) =
|Rna ∩Rnb |
|Rna ∪Rnb |

,

where |Rna ∩Rnb | is the count of tuples which contains
both node na and nb, and |Rna ∪ Rnb | is the count of
tuples which contains either node na or node nb in R.

For example, the correlation of nodes Sunny (occurs
in tuples r1, r2 and r3) and Cool (occurs in tuples
r3 and r4) is

|{(r1,r2,r3)∩(r3,r4)}|
|{(r1,r2,r3)∪(r3,r4)}| =

1
4 = 0.25. Note

that this is the Jaccard-coefficient measurement [16],
and is able to indicate the correlated level between two
nodes. In general, there are many measurements to



δ

1
Correlation

Node pair

Gravitative Correlation
Replusive Correlation

0

Figure 2: The illustration of the force correlation.

evaluate the correlation between two patterns [19], e.g.,
the chi-square measure. We select Jaccard-coefficient
measurement because it satisfies many mathematical
properties. Explicitly, the range of correlation will be
in 0~1. The correlation of na → nb is equal to the
correlation of nb → na (symmetric distance) because
the symmetry property holds. Tuples without nodes
nb and na will not be taken in consideration when
the correlation of these two nodes is calculated (null
invariance property). For example, tuples r5 and r6 in
Table 1 would not be considered into the calculation
of the correlation between nodes Sunny and Cool. In
practice, this property allows our mechanism to be
extensible to the transactional data model.

Note that Corr(na, nb) is bounded in 0~1, it is pos-
sible to determine a threshold, δ, to divide the values
into two intervals, which are the gravitative correlation
interval and the repulsive correlation interval, respec-
tively. Both gravitative correlation and repulsive corre-
lation are referred to as the force correlation.
Definition 2 (The Force Correlation):

The force correlation is defined as:

FC(na, nb) = Corr(na, nb)− δ.

In other words, if Corr(na, nb) = δ, nodes
na and nb are gravitatively correlated. Oppositely, if
Corr(na, nb) < δ, nodes na and nb will be repulsively
correlated. With this definition, node pairs will have
similar and dissimilar behavior like the definition of sim-
ilarity and dissimilarity in traditional clustering algo-
rithms. A concept of the force correlation is illustrated
in Figure 2, in which the node pairs are divided into two
partitions by cutting the correlation axis at δ.

Furthermore, to adequately utilize the behavior of
gravitative and repulsive correlations, we can define
the node-gravity formula and node-repulsion formula
to represent the gravity/repulsion between each node
pair. In essence, the gravity concept is exploited to
perform clustering in [12][20], which utilized the gravity
to represent the similarity between two clusters over
the numerical domain. In other words, the larger
gravity between two clusters, the more similar to each

other they are. Note that the gravity in the physics
is generally expressed as F = g∗m1∗m2

d2 , where g is a
constant, m1 and m2 are the mass of the corresponding
two objects, and d is the distance between them.
Similarly, we conduct the concept of the repulsion to
avoid that any two-object pair is always co-attractive
because a gravity absolutely exists and would merge
ultimately.

We utilize the gravitative correlation and the re-
pulsive correlation to conduct the gravitative/repulsive
magnitude, or said the force magnitude, between two
nodes in different clusters. Explicitly, we have the fol-
lowing definition.
Definition 3 (Gravitative/Repulsive force magnitude):

For node na in cluster Ci and node nb in cluster Cj ,
the force, represented by F = g∗m1∗m2

d2 , is defined as:

F (Ci : na, Cj : nb) = α(na, nb)∗
Sup(na,Ci)

|Ci| ∗ Sup(nb,Cj)
|Cj |

d(na, nb)2
,

where |Ci| and |Cj | are the counts of tuples in cluster Ci

and Cj, respectively. Sup(na, Ci) is the support count
of node na in cluster Ci, and Sup(nb, Cj) is the support
count of node nb in cluster Cj . In addition, α(na, nb) is
defined as:

α(na, nb) = {
1, if na and nb are gravitatively correlated
−1, if na and nb are repulsively correlated

,

which can indicate that this force between nodes na and
nb is gravity or repulsion.

Note that Sup(na,Ci)
|Ci| and Sup(nb,Cj)

|Cj | are normalized
terms and therefore are able to convey the concept of
the "mass" rather than the "weight" in the aspect of
physics. Another importance needs to be specified is the
reciprocal of distance square, i.e., 1

d(na,nb)2
. Note that a

property of this value must hold: if the correlation of the
node pair < na, nb > is larger, the reciprocal of distance
square should be larger to represent the relation that
nodes na and nb are close to each other.
Definition 4 (The reciprocal of distance square be-
tween node na and node nb):

The reciprocal of distance square between node na
and node nb is defined as:

1

d(na, nb)2
= [Corr(na, nb)− δ]2 = FC(na, nb)

2.

By adopting this definition, node gravity/repulsion
defined in Definition 3 would satisfy the property that
if Corr(na, nb) is much larger then δ, they would have
a strong gravity to stand for the behavior that nodes
na and nb usually occur together. On the other hand,
if Corr(na, nb) is much smaller then δ, they will have a



strong repulsion because nodes na and nb almost do not
occur together. Note that d(na, nb) = d(nb, na) because
Jaccard-coefficient correlation is symmetric [19].

It can be verified that F (Ci : na, Cj : nb) is limited
in [-1,1], because Sup(na,Ci)

|Ci| ∗ Sup(nb,Cj)|Cj | and 1
d(Ia,Ib)2

are
both bounded in [0,1].

The other question to resolve is to determine the
correlation threshold, δ. Thus supported by a statistical
perspective and the experimental results, we conduct a
recommendable correlation threshold:
Definition 5 (The recommendable correlation thresh-
old):

The recommendable value bδ is conducted as:
bδ =

X
na∈N

[
X

nb∈N,nb 6=na

Corr(na, nb)]

|N | ∗ (|N |− 1) ,

where |N | denotes the size of distinct nodes of the
dataset. In brief, bδ is the correlation mean of all node
pairs.
Lemma 1 The distribution of correlation tends to be a
Gaussian distribution with mean of bδ and variance of σ
by following the central limit theorem [18].

Note that according to Lemma 1, the node set would
be equally divided into 2 partitions by setting δ = bδ.
In our opinion, a sensible δ would satisfy that there
are half of node pairs determined gravitative and the
other half determined repulsive. This argument is also
strengthened by our experimental observation because
setting δ = bδ usually obtains an excellent quality in
different cases.

It is noted that bδ ± 2σ is usually considered signif-
icant in the statistical sense [18]. Thus another possi-
ble suggestion that if the users want to make the data
strictly merge together, let δ = bδ + ε, where ε is a pos-
itive real number and smaller than 2σ. On the other
hand, let bδ − 2σ < δ ≤ bδ if the users want to make the
data loosely merge together.

2.2 Clustering objective The objective of cluster-
ing categorical data considered in this paper can be
stated as "By a given database of categorical tuples, de-
termining the clustering in such a way that each cluster
has the largest intra-gravity force within the cluster and
has the largest inter-repulsion force toward other clus-
ters." This objective can also be translated to that the
cluster Ci should have the largest gravity and small-
est repulsion within the cluster, and also have small-
est gravity and largest repulsion toward other clusters.
Clearly, if the node pair < na, nb > has large gravita-
tive correlation, na and nb should be arranged to the
same cluster because they often occur together in the
original dataset. In essence, clusters are able to be

Cluster Core Region

Repulsive Correlation

Gravitative Correlation

Node

Cluster

Figure 3: The galaxy representation of clusters.

represented as a galaxy under the clustering objective.
Figure 3 shows this concept clearly. In Figure 3, some
"large" nodes denote those nodes have big mass (i.e.,
the support value of node na in cluster Ci,

Sup(na,Ci)
|Ci| ,

is large), and thicker lines denote the node pairs have
the larger force correlation. Note that the above illus-
tration method is the same is the same whether the
correlation is gravitative or repulsive in Figure 3. Based
on the clustering objective, we know that the cluster is
formed by the cluster core region with a node set whose
elements have large gravity in spite of some nodes within
the cluster are repulsive to others. In addition, the force
between clusters is expected to be repulsive in theory.
Note that we omit many lines in Figure 3 which are cor-
responding to gravitative and repulsive correlation for
ease of presentation. In practice, all node pairs in the
cluster will contribute their correlation when performing
clustering even some of them are small.

The following definition states the cluster similarity
measurement based on the correlated-force ensemble to
measure the force between two clusters.
Definition 6 (The Clustering Similarity Measurement
based on correlated-force ensemble):

The cluster similarity between clusters Ci and Cj is
defined as:

L(Ci, Cj) =

X
na∈NCi

,nb∈NCj

F (Ci : na, Cj : nb)

|NCi | ∗ |NCj |
.

L(Ci, Cj) is calculated by summing all forces be-
tween clusters Ci and Cj , and normalized by the count
of node pairs in these two clusters. The reason why we
use the normalized term is to avoid the case that large
clusters would be always more similar because their
forces are large in general. Note that F (Ci : na, Cj :
nb) is limited in [-1,1] that we had mentioned before,
L(Ci, Cj) is hence limited in [-1,1]. Explicitly, we con-
sider that the cluster pair {Ci, Cj} which has the largest
L(Ci, Cj) should be merged first because they are high-
est co-attractive.



0.25 NormalCool

0.33 HighCool

0.00 HeighCool

0.25HeighMild

0.2 HighMild

0.4MidRainy

0.25 CoolRainy

0.00 NormalRainy

0.67 HighRainy

0.33 HeighRainy

0.4 NormalMild

0.00HighSunny

0.00HeighSunny

0.25CoolSunny

1.00NormalSunny

0.67MidSunny

CorrelationNode2Node1

0.25 NormalCool

0.33 HighCool

0.00 HeighCool

0.25HeighMild

0.2 HighMild

0.4MidRainy

0.25 CoolRainy

0.00 NormalRainy

0.67 HighRainy

0.33 HeighRainy

0.4 NormalMild

0.00HighSunny

0.00HeighSunny

0.25CoolSunny

1.00NormalSunny

0.67MidSunny

CorrelationNode2Node1

The Correlation of all other pairs are zero.

(a) Jaccard-coefficient Correlation Table

δ=0.24

0.01 NormalCool

0.09 HighCool

-0.24 HeighCool

0.01HeighMild

-0.04 HighMild

0.16MidRainy

0.01 CoolRainy

-0.24 NormalRainy

0.43 HighRainy

0.09 HeighRainy

0.16 NormalMild

-0.24HighSunny

-0.24HeighSunny

0.01CoolSunny

0.76NormalSunny

0.43MidSunny

Forced CorrelationNode2Node1

0.01 NormalCool

0.09 HighCool

-0.24 HeighCool

0.01HeighMild

-0.04 HighMild

0.16MidRainy

0.01 CoolRainy

-0.24 NormalRainy

0.43 HighRainy

0.09 HeighRainy

0.16 NormalMild

-0.24HighSunny

-0.24HeighSunny

0.01CoolSunny

0.76NormalSunny

0.43MidSunny

Forced CorrelationNode2Node1

The forced correlation of all other pairs are -0.24.

(b) Forced Correlation Table

Transfer to Force 
Correlation Table

Figure 4: The Force Correlation table.

2.3 An Illustrative Example We illustrate the
concept of the proposed cluster similarity measurement
by going through the example shown in Table 1. Ini-
tially, the example dataset is scanned once, and thus
the Jaccard-coefficient correlations of all node pairs are
calculated. The result is shown in the part (a) of Fig-
ure 4. In addition, some node pairs never happen, e.g.,
nodes Sunny and High do not occur together in the
example, and their correlation will thus be zero. There-
fore some of those zero-correlation pairs are omitted in
Figure 4 to make the illustration sample. Note that
Jaccard-coefficient is symmetric, such that the node
pair < na, nb > is also omitted in the table if the
node pair < nb, na > is shown already. In short, to-
tally there are 7 nodes and P 72 = 7 ∗ 6 = 42 possi-
ble permutations of node pairs. As a result, the rec-
ommendable δ defined in Definition 5 is calculated asbδ = 0.67+0.25+1.00+...+0.00

7∗6 = 0.24, which is the correla-
tion mean of all node pairs. Therefore we transfer the
correlation to the force correlation by decreasing the
correlation by 0.24. The result of the force correlation
table is shown is the part (b) of Figure 4.

After retrieving the information of force correla-
tions, we would like to calculate the similarity between
two clusters (In the hierarchical clustering model, each
tuple denotes a cluster initially). The overall process
is called as "Gravity Transformation" in this paper.
Specifically, the cluster members are transformed from
the original categorical data space to the gravity space,
and thus the similarity between clusters are calculated
in this procedure. One example of the process is illus-
trated in Figure 5. Two sub-procedures, i.e., Nodeize
and Force, are included in the Gravity Transforma-
tion. In the Nodeize procedure, tuples are transformed
into a set of nodes. Here two tuples r5 (be labeled
by cluster C1) and r6 (be labeled by cluster C2) are
considered. They are transformed to the node per-

HighMildRainyr5

HumidityTemp.OutlookTID

HighMildRainyr5

HumidityTemp.OutlookTID
C1

C2

C1

C2

Nodeize Force

HeighMildRainyr6

HumidityTemp.OutlookTID

HeighMildRainyr6

HumidityTemp.OutlookTID

Rainy:1 Mild:1
High:1

Rainy:1 Mild:1
Heigh:1

0.16

0.76

0.43

-0.04

0.09

-0.24

0.09

0.76
0.16

Gravity SpaceGravity SpaceCategorical Data SpaceCategorical Data Space
Gravity TransformationGravity Transformation

1

Rainy

1

Rainy

1

Mild

1

Mild

1

High

1

High

1

Rainy

1

Rainy

1

Mild

1

Mild

1

Heigh

1

Heigh

Figure 5: The illustration of Gravity Transformation
for clusters consisting of 1 tuple.

spective by the Nodeize procedure at first. Theoreti-
cally there is only one occurrence of each node in a tu-
ple. In the following, the force magnitudes of nodes na
and nb are accumulated in the Force procedure, where
na 3 NC1 and nb 3 NC2 . Here the force correlations
are labeled in the corresponding line between the node
pairs. For example, the node pairs < C1 : Rainy,
C2 : Heigh >, < C1 : Rainy, C2 : Mild > has
force correlations 0.09 and 0.16, respectively. Thus
F (C1 : Rainy,C2 : Heigh) = 1 ∗ 1 ∗ 0.092 = 0.0081
and F (C1 : Rainy,C2 : Mild) = 1 ∗ 1 ∗ 0.162 = 0.0256.
Note that F (C1 : Rainy,C2 : Heigh) is much smaller
than F (C1 : Rainy,C2 :Mild), which can demonstrate
our clustering criterion would mitigate the influence of
noisy values. L(C1, C2) can be calculated sequentially
as 0.0256+0.0081+...−0.0016−0.0576

3∗3 = 0.1498, where there
are 3 ∗ 3 node pairs between those two clusters.

In practice, clusters would consist of more than one
tuple. Without loss of generality, we give an example of
clusters consisting of 2 tuples in Figure 6, where cluster
C1 consists of tuples r1, r2 and cluster C2 consists of
tuples r5, r6. Those tuples are transformed to the node
perspective by the Nodeize procedure and thus get the
information of nodes, e.g., node Sunny occurs twice in
cluster C1, i.e., Sup(Sunny,C1) = 2, and node High
occurs only once in cluster C2, i.e., Sup(High,C2) = 1.
In the following, F (C1 : na, C2 : nb) of node na in
C1 and node nb in C2 is calculated by injecting the
support of nodes, i.e., the concept of mass said in the
definition 3. For example, F (C1 : Sunny,C2 : High) =
−1 ∗ 22 ∗

1
2 ∗ (−0.24)2 = −0.0288. It is a negative value

and contributes a repulsion because these two nodes
are never occurring together in Table 1. From the
Force procedure shown in the right part of Figure 6, we
know that only the node Mild would have the gravity
and other nodes all contribute repulsion. Therefore the
cluster pair {C1, C2} is not considered a good candidate
to merge.



NormalMildSunnyr2

NormalMildSunnyr1

HumidityTemp.OutlookTID

NormalMildSunnyr2

NormalMildSunnyr1

HumidityTemp.OutlookTID

C1

C2

C1

C2

C1

C2

Nodeize

Gravity SpaceGravity Space

HeighMildRainyr6

HighMildRainyr5

HumidityTemp.OutlookTID

HeighMildRainyr6

HighMildRainyr5

HumidityTemp.OutlookTID

Sunny:2 Mild:2
Normal:2

Rainy:2
Mild:2

High:1
Heigh:1

Categorical Data SpaceCategorical Data Space

Nodeize Force

Gravity TransformationGravity Transformation

2

Sunny

2

Sunny

2

Mild

2

Mild

2

Normal

2

Normal

2

Rainy

2

Rainy

2

Mild

2

Mild

1

High

1

High

1

Heigh

1

Heigh

Figure 6: The illustration of Gravity Transformation for
clusters consisting of 2 tuples.

3 Design of Algorithm CORE
In light of the clustering objective, we develop an
algorithm, named CORE (standing for clustering by
CORrelated-force Ensemble), to perform subspace
clustering on categorical data. Algorithm CORE is an
agglomerative clustering method which transforms cat-
egorical tuples into the gravity space and calculates the
ensemble of correlated-forces between each cluster pair.
The detail of each step is described as follows:
Procedure of Algorithm CORE
Step 1. Scan the database R and generate FCar-
ray.

Explicitly, the element of row a and column b of
the force correlation table (abbreviated as FCarray)
denotes the force correlation of the node pair < na,
nb >. FCarray will facilitate the computation to obtain
the force magnitude.
Step 2. Build initial cluster set from R and
construct the local heap of each cluster.

Note that algorithm CORE is devised based on the
hierarchical clustering model. Therefore initially each
tuple in R will construct a cluster, respectively. The-
oretically, the local heap of the cluster Ci should con-
tain the similarity between Ci and any other cluster
Cj , i.e., L(Ci, Cj). However, the local heap of cluster
Ci can merely record the information of those clusters
which L(Ci, Cj) > 0 in practice. It will be an appropri-
ate space-saving strategy because the users may merge
those clusters with gravity in the first clustering run.
Step 3. Rebuild the global heap and make sure
it consists of all maximum elements in the local
heap of each cluster.

The global heap is constructed by
Max(Ci.LocalHeap), where Ci is any remaining
cluster and Ci.LocalHeap is the local heap of Ci.
Max(Ci.LocalHeap) stands for the cluster pair
{Ci, Cj} whose L(Ci, Cj) is maximal among all cluster
pairs in the local heap of Ci.

Step 4. If the global heap is empty, goto Step 8.
The global heap will be empty if no any cluster pair

is considered to merge. In other words, their is no any
element in the local heaps of remaining clusters.
Step 5. Extract the maximum cluster pair
{Ca, Cb} from the head of the global heap. Merge
cluster Cb into cluster Ca.

Note that cluster Ca will add those necessary infor-
mation contained in cluster Cb.
Step 6. For each cluster Ci 3 {Ca.LocalHeap ∪
Cb.LocalHeap}, let the goodness of the cluster pair
{Ci, Ca} be accumulated by the goodness of the
cluster pair {Ci, Cb}. In addition, the information
of the cluster pair {Ci, Cb} is removed from
Ci.LocalHeap.

The value, named goodness, of cluster pair {Ci, Cj}
is stated as follows:

g(Ci, Cj) =
X

na∈NCi
,nb∈NCj

{α(na, nb) ∗ Sup(na, Ci)

∗Sup(nb, Cj) ∗ [Corr(na, nb)− δ]2}.

Recording goodness of every cluster pair {Ci, Cp}
in their corresponding local heaps will make the be-
low equation hold: The similarity of the cluster pair
{Ci, Cj}, i.e., L(Ci, Cj), is equal to

g(Ci, Cp) + g(Ci, Cq)

|Ci| ∗ |Cj | ∗ |NCi | ∗ |NCj |
,

where cluster Cj is constituted by clusters Cp and Cq

in the early merging procedure.
Note that cluster Cb will be merged into Ca, thus

information about cluster Ca in the local heap of cluster
Ci would be updated and information about cluster Cb

in the local heap of cluster Cb should be removed.
Step 7. Delete cluster Cb. Then go back to Step
3.

After updating the information about merging clus-
ter Cb into cluster Ca, Cb would be deleted from the
cluster set and go into the next hierarchical merging it-
eration. It is noted that there is a while loop from Step
3 to Step 7.
Step 8. Perform the outlier detection task.

When the global heap is empty, removing the clus-
ters containing a small number of tuples is one recom-
mendable outlier detection strategy. In addition, algo-
rithm CORE can give a recommending number of clus-
ters, which is the result in the end of Step 8. Note that
this is an option rather than a necessity because it is
possible to generate the user-desired number of clusters
by performing Step 9. Note that algorithm ROCK can
not merge clusters after getting the recommending re-
sult even though the recommending number of clusters
is much larger than the user desired one.



Step 9. Rebuild local heaps of all remaining
clusters. Then go back to Step 3.

If the recommending number of clusters is not ac-
ceptable, algorithm CORE can continue to merge re-
maining clusters toward the user-desired number. Al-
gorithm CORE rebuilds the local heap of the remain-
ing clusters. Note that all elements of the local heap
would merely contain cluster pairs which similarity is
smaller than zero because all cluster pairs connected by
the gravity have been merged in the first clustering run.
As a result, merging those cluster pairs which have lit-
tle repulsion (after going back to Step 3), the desired
number of clusters can be generated consequently.
Step 10. Finish the clustering, and report the
result.

4 Experimental Results
We assess the quality of algorithms ROCK, KModes
and CORE in Windows XP professional platform with
1G memory and 1G P3-CPU. Note that algorithms
CACTUS and STIRR did not consider how to allocate
data tuples into clusters, and are thus not included into
our comparison. Those codes are all implemented by
Java and complied by sun jdk1.4. We describe the
evaluation model in Section 4.1. The experiments of
public domain real data are shown in Section 4.2.

4.1 The Evaluation Model In general, the evalu-
ation model for clustering is based on the square er-
ror criterion [16]. However, the absence of the natural
ordered property of categorical data makes this kind
of evaluation models difficult to be employed. Several
evaluation models, e.g., significance test [16] and cat-
egory utility function [11], are conducted to evaluate
clustering on categorical data based on the statistical
test. However, the human viewpoint, which is the most
important issue should be concerned in practice, is not
taken into account in those models. Some previous algo-
rithms conduct experiments by applying the data with
a class attribute, i.e., the data used in the supervised
learning. Similarly, we take the kind of data, and ad-
ditionally utilize an evaluation function, F-measure [1],
which is a weighted combination of the recall rate and
the precision rate, to conduct the quantifiable analy-
sis. The advantages of this evaluation model include
that the factor of the human perspective can be vali-
dated and that a quantifiable comparison can be con-
ducted. This evaluation model is stated as follows.
Given a set of tuples, each tuple ri has a class label
Li. There are {C1, C2, ..., Cp}, p distinct class labels
and Li ⊆ {C1, C2, ..., Cp}. After blinding the label Li
and performing the clustering algorithm, we have the
clustering result U and an estimated class label cLi, i.e.,

the identification of the allocated cluster, for each tuple
ri. In general, there are {E1, E2, ..., Eq}, q distinct clus-
ters generated and cLi ⊆ {E1, E2, ..., Eq}. Note that q
≥ p is permitted. However, creating more clusters than
the desired clusters is not desirable. Thus, we select p
distinct clusters {C∗1 , C∗2 , ..., C∗p} from {E1, E2, ..., Eq}
for corresponding to {C1, C2, ..., Cp}, respectively, and
ignore other remaining clusters. Moreover, each pair of
matching clusters < Ci, C

∗
i > is given a score by applied

F-measure [1]:

fβ(Ci, C
∗
i ) =

(β2 + 1)PR

β2P +R
,

where P and R are the precision rate and the recall
rate, respectively. β is a weighted value to adapt
the importance of P and R. We set β = 1 for all
cases to equally treat the precision rate and the recall
rate. Thus, the average score of this combination is
formulated as:

Fβ =

pP
i=1

fβ(Ci, C
∗
i )

p
.

To denote the best possible situation of this cluster-
ing result, the score of the clustering result U is hence
selected as the maximum Fβ , which is abbreviated as
Max(Fβ), from (Cq

p ∗p!) combinations. In essence, good
clustering quality is able to result in a high Max(Fβ)
because this clustering result attains both the high pre-
cision rate and the high recall rate. The detail of this
evaluation method will be illustrated in the result shown
in Section 4.2.

In addition, the default number of clusters is
set to the corresponding number of class labels, i.e.,
#Classes, of each data in all experiments. Moreover,
the results of algorithms KModes are unstable due to
the random selection of the initial cluster centers. Thus
we perform ten executions of algorithm KModes for each
experiment and report the result with the bestMax(Fβ)
from the ten executions in our simulation. To assess al-
gorithm ROCK, since there is no predetermined θ, for
fair comparisons, we run 19 executions with different θ
which is set to 0.05~0.95 and steps by 0.05. Note that
a larger θ will cause many tuples have no neighbors and
lead to the generation of too many outliers. For equally
comparing the three algorithms, we discard the results
of algorithm ROCK whose numbers of outliers are more
than 15% of tuples, and select the one with Max(Fβ)
from the remainder. Algorithm CORE is executed with
the recommended value bδ (i.e., the mean of all node
pairs) and no user-defined procedure is required.



4.2 Experiments with Real Data We conduct
comparisons on several public domain data downloaded
from UCI machine learning repository [4]. Here we se-
lect seven categorical data, including the soybean data-
base, the congressional voting records database (abbre-
viated asVoting), mushrooms database, Teaching Assis-
tant Evaluation database (abbreviated as TAE ), the zoo
database, the wisconsin breast cancer database (abbre-
viated as Breast-Cancer), and the lymphography data-
base. Among others, in Figure 7 we show the result
of Soybean dataset for demonstrating the detail of the
clustering evaluation model. We select the small ver-
sion of the soybean data, which is a well-known dataset
in the machine learning community. There are 35 at-
tributes, 47 tuples, and 4 kinds of diseases (denoted by
D1, D2, D3 and D4, respectively) as the class labels in
the dataset. In addition, there is no missing value in this
dataset. The clustering results of algorithms CORE,
KModes and ROCK are shown in the part (a), (b) and
(c) of Figure 7, respectively. Here D1∗,D2∗,D3∗ and
D4∗ are the outcome clusters, which form the best com-
bination with Max(Fβ) for representing the four class
labels D1, D2, D3 and D4, respectively. Note that in
Figure 7, a 4*4 contingence table is shown to repre-
sent the tuple distribution of the clustering result. For
example, there are 10 tuples belonging to D2, and in
the result of algorithm KModes, there are 8 tuples allo-
cated to D2∗ and 2 tuples allocated to D4∗. According
to the information shown in the contingence table, we
can calculate the corresponding precision P and recall
R, and F-measure is conducted. For example, the out-
come cluster D2∗ of algorithm KModes has 8 tuples
belonging to class label D2 and 1 tuple belonging to
D3. Thus D2∗ has a total of 9 tuples and the preci-
sion P = 8

9 = 0.89 when D2∗ is used to represent D2.
Similarly, the recall R = 8

10 = 0.8 because there are 10
tuples belonging to D2. Finally, the score of F-measure
for this cluster pair is fβ(D2,D2∗) = 2∗P∗R

(P+R) = 0.84.
As a result, Max(Fβ) of each clustering result is ob-
tained and shown in the part (d) of Figure 7. For ex-
ample, Max(Fβ) of algorithm KModes is calculated by
0.21+0.84+0.58+0.56

4 = 0.55, which is the average value of
the four F-measure scores.

From this experiment, we get a surprising result
that algorithm CORE generates the outcome clusters
which perfectly match the four disease labels when we
set δ = bδ + 2σ = 0.35, which is the upper bound of the
recommendable δ. In this situation, algorithm CORE
results in the best possible Max(Fβ), i.e., Max(Fβ) =
1. On the other hand, algorithms ROCK and KModes
merely achieve 0.58 and 0.55, respectively. Note that
Soybean dataset is a high dimensional dataset (35
attributes). Hence from the experiment we demonstrate

(a) CORE (b) KModes

(c) ROCK

11117000D4*

11101000D3*

11100100D2*

11100010D1*

F-measureRPD4D3D2D1

11117000D4*

11101000D3*

11100100D2*

11100010D1*

F-measureRPD4D3D2D1

0.55 0.53 0.56 9601D4*

0.44 0.40 0.50 0431D3*

0.78 0.70 0.88 0071D2*

0.56 0.70 0.47 8007D1*

F-measureRPD4D3D2D1

0.55 0.53 0.56 9601D4*

0.44 0.40 0.50 0431D3*

0.78 0.70 0.88 0071D2*

0.56 0.70 0.47 8007D1*

F-measureRPD4D3D2D1

0.56 0.53 0.60 9222D4*

0.58 0.70 0.50 1706D3*

0.84 0.80 0.89 0180D2*

0.21 0.20 0.22 7002D1*

F-measureRPD4D3D2D1

0.56 0.53 0.60 9222D4*

0.58 0.70 0.50 1706D3*

0.84 0.80 0.89 0180D2*

0.21 0.20 0.22 7002D1*

F-measureRPD4D3D2D1

0.55KModes

0.58ROCK (θ=0.25)

1.00CORE (δ=0.35)

Max(Fβ)

0.55KModes

0.58ROCK (θ=0.25)

1.00CORE (δ=0.35)

Max(Fβ)

NoMissing

35#Attributes

47|R|

4#Classes

SoybeanData Name

NoMissing

35#Attributes

47|R|

4#Classes

SoybeanData Name

(d) Data Summary & Results

Figure 7: The results of Soybean dataset.

the outperformance of algorithm CORE even confronts
the curse of high dimensionality [3] because algorithm
CORE can extract cluster features from subspace node
set.

The remaining experiments of real datasets are
summarized in Table 3. Note that the number of classes
#Classes, the number of tuples |R|, and the number
of attributes #Attributes vary in each dataset. In
addition, some datasets contain missing values while
others do not. In the case of outliers, the clustering
results with outliers are also annotated by the number
of outliers (denoted as |O| in Table 3). From the
observation on clustering those variant real datasets,
algorithm CORE behaves more stably than the other
two algorithms. Note that algorithm CORE mostly
outperforms algorithms ROCK and KModes. Though
algorithm ROCK is the best algorithm for Voting and
Zoo dataset, the results of algorithm CORE are very
close to that of algorithm ROCK in the two cases.
Explicitly, in the result of Voting dataset, there is a
cluster with 3 tuples which is generated by algorithm
CORE, and thus we consider them as outliers. However,
there are 63 tuples determined as outliers by algorithm
ROCK. It is a admirable result of algorithm CORE
which can be very close to the result of algorithm ROCK
while not considering many tuples as outliers.

Furthermore, algorithms ROCK and KModes are
not stable to deal with different cases of data distribu-
tion. Sometimes algorithm ROCK even has the worse
quality than algorithm KModes. More specifically, the
best experimental result of Mushroom dataset by per-
forming algorithm ROCK appears when we set the num-
ber of clusters to 5 (denoted by |C| = 5), which is
larger than the number of class labels. Despite algo-
rithm ROCK has a very high purity when it generates
21 clusters (which is the experimental result shown in
[14]), the recall rate is small and therefore Max(Fβ) is
not maximized in this case, meaning that the result is
not the best when we consider the human viewpoint.



Max(Fβ)

Data Name #Classes |R| #Attributes Missing CORE ROCK KModes

Voting 2 435 16 Yes
0.86
|O| = 3

0.87(θ = 0.73)
|O| = 63 0.85

mushroom 2 8124 22 Yes 0.87∗ 0.62(θ = 0.55)
|C| = 5 0.58

TAE 3 151 5 No 0.46∗ 0.21(θ = 0.4)
|O| = 2 0.35

Zoo 7 101 16 No 0.75
0.77(θ = 0.8)
|O| = 10 0.75

Breast-Cancer 2 286 9 Yes 0.58∗ 0.41(θ = 0.5)
|O| = 1 0.51

Lymphography 4 148 18 No 0.42∗ 0.37(θ = 0.6)
|O| = 11 0.34

Table 3: The experimental results on publc domain real data.

5 Conclusion
In this paper, we proposed a high-quality algorithm,
called CORE, for clustering categorical data. Specifi-
cally, in view of the phenomena from the observation of
clustering categorical data, algorithm CORE is devised
based on the proposed correlated-force ensemble tech-
nique. Many miscellaneous issues are also discussed to
strengthen the practicability of algorithm CORE. As a
result, the experiments show the outperformance of al-
gorithm CORE in variant real datasets.

Acknowledgments
The authors are supported in part by the Ministry

of Education Project No. 89-E-FA06-2-4, and the
National Science Council Project No. NSC 91-2213-E-
002-034 and NSC 91-2213-E-002-045, Taiwan, Republic
of China. In addition, K.-T. Chuang was in part
supported by the scholarship from Ericsson Taiwan.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[2] D. Barbara, Y. Li, and J. Couto. Coolcat: an entropy-
based algorithm for categorical clustering. In Proc.
of ACM Int. Conf. on Information and Knowledge
Management, 2002.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is Nearest Neighbor Meaningful? In
Proc. of ICDT Conference, 1999.

[4] C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

[5] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental Clustering and Dynamic Information Re-
trieval. In Proc. of the ACM Symposium on Theory of
Computing, 1997.

[6] M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An
Overview from Database Perspective. IEEE Trans. on
Knowledge and Data Engineering, Dec. 1996.

[7] J. C. Principe E. Gokcay. Information theoretic clus-
tering. IEEE Trans. on Pattern Analysis and Machine
Intelligence, Feb. 2002.

[8] D. H. Fisher. Knowledge Acquisition via Incremental
Conceptual Clustering. Machine Learning, 1987.

[9] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS-
Clustering Categorical Data Using Summaries. In
Proc. of ACM SIGKDD, 1999.

[10] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering
Categorical Data: An Approach Based on Dynamical
Systems. In Proc of the 24th VLDB Conference, 1998.

[11] A. Gluck and J. Corter. Information, uncertainty, and
the utility of categories. In Proc. of the Seventh Annual
Conference of the Cognitive Science Society, 1985.

[12] J. Gomez, D. Dsgupta, and O. Nasraoui. A new
gravitational clustering algorithm. In Proc. of the
SIAM Int. Conf. on Data Mining (SDM), 2003.

[13] S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. In Proc of
ACM Int. Conf. on Management of Data, 1998.

[14] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust
Clustering Algorithm for Categorical Attributes. In
Proc. of the 15th Int. Conf. on Data Engineering, 1999.

[15] Z. Huang. Extensions to the K-Means Algorithm for
Clustering Large Data Sets with Categorical Values.
Data Mining and Knowledge Discovery, 1998.

[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988.

[17] E. Rahm and H.-H. Do. Data cleaning: Problems and
current approaches. IEEE Bulletin of the Technical
Committee on Data Engineering, 2000, 2000.

[18] J. A. Rice. Mathematical statistics and data analysis.
Duxbury Press, 1995.

[19] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the
right interestingness measure for association patterns.
In Proc. of ACM SIGKDD, 2002.

[20] W. E. Wright. Gravitational clustering. Pattern
Recognition, 9:151—166, 1977.


