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Abstract

In this paper, we devise an efficient algorithm for cluster-
ing market-basket data items. In view of the nature of clus-
tering market basket data, we devise in this paper a novel
measurement, called the small-large (abbreviated as SL) ra-
tio, and utilize this ratio to perform the clustering. With this
SL ratio measurement, we develop an efficient clustering
algorithm for data items to minimize the SL ratio in each
group. The proposed algorithm not only incurs an execution
time that is significantly smaller than that by prior work but
also leads to the clustering results of very good quality.

Keywords —Data mining, clustering analysis, market-
basket data, small-large ratios.

1 Introduction

Mining of databases has attracted a growing amount of
attention in database communities due to its wide applica-
bility to improving marketing strategies [3][4]. Among oth-
ers, data clustering is an important technique for exploratory
data analysis [5][6]. In essence, clustering is meant to di-
vide a set of data items into some proper groups in such
a way that items in the same group are as similar to one
another as possible. Market-basket data analysis has been
well addressed in mining association rules for discovering
the set of large items. Large items refer to frequently pur-
chased items among all transactions and a transaction is rep-
resented by a set of items purchased [2]. Different from
the traditional data, the features of market basket data are
known to be high dimensionality, sparsity, and with mas-
sive outliers [7]. The authors in [8] proposed an algorithm
for clustering market-basket data by utilizing the concept of
large items to divide the transactions into clusters such that
similar transactions are in the same cluster and dissimilar
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Figure 1. An example database for clustering
market-basket data.

transactions are in different clusters. This algorithm in [8]
will be referred to as algorithm Basic in this paper, and will
be used for comparison purposes. An example database for
clustering market-basket data is shown in Figure 1.

In view of the nature of clustering market basket data, we
devise in this paper a novel measurement, called the small-
large (abbreviated as SL) ratio, and utilize this ratio to per-
form the clustering. The support of an item i in a cluster C,
SupC(i), is defined as the percentage of transactions which
contain this item i in clusterC. For the clusteringU0 shown
in Figure 1, the support SupC1(A) is 20% and SupC1(B)
is 80%. An item in a cluster is called a large item if the sup-
port of that item exceeds a pre-specified minimum support
S (i.e., an item that appeared in a sufficient number of trans-
actions). On the other hand, an item in a group is called
a small item if the support of that item is less than a pre-
specified maximum ceiling E (i.e., an item that appeared in
a limited number of transactions). To model the relation-
ship between minimum support S and maximum ceiling E,
the damping factor λ is defined as the ratio of E to S, i.e.,
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Figure 2. The large, middle, and small items
in clusters, and the corresponding SL ratios
of transactions.

λ = E
S . In addition, an item is called a middle item if

it is neither large nor small. For the supports of the items
shown in Figure 1, if S = 60% and E = 30%, we can obtain
the large, middle, and small items shown in Figure 2. In
C2 = {210, 220, 230, 240, 250}, B and I are large items. In
addition, C and E are middle items and A is a small item.

Clearly, the portions of large and small items represent
the quality of the clustering. Explicitly, the ratio of the num-
ber of small items to that of large items in a group is called
small-large ratio of that group. Clearly, the smaller the SL
ratio, the more similar the items in that group are. With this
SL ratio measurement, we develop an efficient clustering al-
gorithm, algorithm SLR (standing for Small-Large Ratio),
for data items to minimize the SL ratio in each group. It is
shown by our experimental results that by utilizing the SL
ratio, the proposed algorithm is able to cluster the data items
very efficiently.

This paper is organized as follows. Preliminaries are
given in Section 2. In Section 3, an algorithm, referred to as
algorithm SLR (Small-Large Ratio), is devised for cluster-
ing market-basket data. Experimental studies are conducted
in Section 4. This paper concludes with Section 5.

2 Preliminaries

We investigate the problem of clustering market-basket
data, where the market-basket data is represented by a
set of transactions. A database of transactions is denoted
by D = {t1, t2, ..., th}, where each transaction ti is a
set of items {i1, i2, ..., ih}. For the example shown in
Figure 1, we are given a predetermined clustering U0 =<
C1, C2, C3 >, where C1 = {110, 120, 130, 140, 150},
C2 = {210, 220, 230, 240, 250}, and C3 =
{310, 320, 330, 340, 350}.

2.1 Large Items and Small Items

The concept of large items is first introduced in mining
association rules [2]. In [8], using large items as similar-
ity measure of a cluster is utilized in clustering transac-
tions. Specifically, large items in cluster Cj are the items
frequently purchased by the customers in cluster Cj . In
other words, large items are popular items in a cluster and
thus contribute to similarity in a cluster. While rendering
the clustering of fine quality, it is noted that the execution
efficiency of the algorithm in [8] could be further improved
due to its relatively inefficient steps in the refinement phase.
This could be partly due to the reason that the similarity
measurement used in [8] does not take into consideration
the existence of small items. To remedy this, a maximal
ceiling E is proposed in this paper for identifying the items
of rare occurrences. If an item whose support is below
a specified maximal ceiling E, that item is called a small
item. Hence, small items in a cluster contribute to dissimi-
larity in a cluster. In this paper, the similarity measurement
of transactions is derived from the ratio of the number of
large items to that of small items. In the example shown in
Figure 1, with the minimum support S = 60% and the max-
imum ceiling E = 30%, we can obtain the large, middle,
and small items by counting their supports. In C1, item B
is large because its support value is 80% (appearing in TID
110, 120,130, and 150) which exceeds the minimum sup-
port S. However, item A is small in C1 because its support
is 20% which is less than the maximum ceiling E.

2.2 Cost Function

We use LaI(Cj , S) to denote the set of large items with
respect to attribute I in Cj , and SmI(Cj , E) to denote
the set of small items with respect to attribute I in Cj .
For a clustering U = {C1, ..., Ck}, the corresponding cost
for attribute I has two components: the intra-cluster cost
IntraI(U) and the inter-cluster cost InterI(U), which are
described in detail below.

Intra-Cluster Cost: The intra-cluster item cost is meant
to represent for intra-cluster item-dissimilarity and is mea-
sured by the total number of small items, where a small item
is an item whose support is less than the maximal ceilingE.
Explicitly, we have

IntraI(U) = | ∪kj=1 SmI(Cj , E)|.

Note that we did not use Σkj=1|SmI(Cj, E)| as the intra-
cluster cost since the use of Σkj=1|SmI(Cj , E)| may cause
the algorithm to tend to put all records into a single or
few clusters even though they are not similar. For exam-
ple, suppose that there are two clusters that are not sim-
ilar but share some small items. If large items remain



large after the merging, merging these two clusters will
reduce Σkj=1|SmI(Cj , E)| because each small item previ-
ously counted twice is now counted only once. However,
this merging is incorrect because sharing of small items
should not be considered as similarity. For the clustering
U0 shown in Figure 2, the small items of C1 are {A, C, F,
G, H, I}. In addition, the small item of C2 is {A} and the
small items of C3 are {B, C, G}. Thus, the intra-cluster cost
IntraI(U0) is 7.

Inter-Cluster Cost: The inter-cluster item cost is to rep-
resent inter-cluster item-similarity and is measured by the
duplication of large items in different clusters, where a large
item is an item whose support exceeds the minimum support
S. Explicitly, we have

InterI(U) = Σ
k
j=1|LaI(Cj , S)|− | ∪kj=1 LaI(Cj, S)|.

Note that this measurement will inhibit the generation of
similar clusters. For the clustering U0 shown in Figure 2,
the large items of C1 are {B, D}. In addition, the large
items ofC2 are {B, I} and the large items ofC3 are {D, H}.
As a result, Σkj=1|LaI(Cj , S)| = 6 and | ∪kj=1 LaI(Cj , S)|
= 4. Hence, the inter-cluster cost InterI(U0) = 2.

Total Cost: Both the intra-cluster item-dissimilarity cost
and the inter-cluster item-similarity cost should be consid-
ered as the total cost incurred. Without loss of generality,
a weight w is specified for the relative importance of these
two terms. The definition of item cost CostI(U0) with re-
spect to attribute I is:

CostI(U0) = w ∗ IntraI(U0) + InterI(U0).
If the weight w > 1, IntraI(U0) is more important than
InterI(U0), and vice versa. In our model, we let w =
1. Thus, for the clustering U0 shown in Figure 2, the
CostI(U0) is 7 + 2 = 9.

2.3 Objective of Clustering Market-Basket Data

The objective of clustering market-basket data is “We are
given a database of transactions, a minimum support, and
a maximum ceiling. Then, we would like to determine a
clustering U such that the total cost is minimized”. The
procedure of clustering algorithm we shall present includes
two phases, namely, the allocation phase and the refinement
phase. In the allocation phase, the database is scanned once
and each transaction is allocated to a cluster based on the
purpose of minimizing the cost. The method of allocation
phase is straightforward and the approach taken in [8] will
suffice. In the refinement phase, each transaction will be
evaluated for its status to minimize the total cost. Explicitly,
a transaction is moved from one cluster to another cluster
if that movement will reduce the total cost of clustering.
The refinement phase repeats until no further movement is

required. The goal of this paper focuses on designing an
efficient algorithm for the refinement phase.

3 Algorithm SLR for Clustering Market-
Basket Data

In this section, we devise algorithm SLR (Small-Large
Ratio) which essentially utilizes the measurement of the
small-large ratio (SL ratio) for clustering market-basket
data. For a transaction t with one attribute I, |LI(t)| rep-
resents the number of the large items in t and |SI(t)| repre-
sents the number of the small items in t. The SL ratio of t
with attribute I in cluster Ci is defined as:

SLRI(Ci, t) =
|SI(t)|
|LI(t)| .

For the clustering shown in Figure 1,
C1 = {110, 120, 130, 140, 150}, C2 =
{210, 220, 230, 240, 250}, and C3 =
{310, 320, 330, 340, 350}. Figure 2 shows that the
minimum support S = 60% and the maximal ceiling E
= 30%. For TID 120, we have two large items {B, D}
and one small item {A}. Thus, the SL ratio of TID 120
is SLRItem(C1, 120) = 1

2 = 0.5. Similarly, the SL ratio
of TID 240 is SLRItem(C2, 240) = 2

2 = 1, because TID
240 has 2 large items {B, I} and 2 small items {C, E}. As
mentioned before, although algorithm Basic utilizes the
large items for similarity measurement, algorithm Basic is
exhaustive in the decision procedure of moving a transac-
tion t to cluster Cj in current clustering U = {C1, ..., Ck}.
For each transaction t, algorithm Basic must compute all
costs of new clusterings when t is put into another cluster.
In contrast, by utilizing the concept of small-large ratios,
algorithm SLR can efficiently determine the next cluster
for each transaction in an iteration, where an iteration is
a refinement procedure from one clustering to the next
clustering.

3.1 Description of Algorithm SLR

Figure 3 shows the main program of algorithm SLR,
which includes two phases: the allocation phase and the re-
finement phase. Similarly to algorithm Basic [8], in the al-
location phase, each transaction t is read in sequence. Each
transaction t can be assigned to an existing cluster or a new
cluster will be created to accommodate t for minimizing the
total cost of clustering. For each transaction, the initially
allocated cluster identifier is written back to the file. How-
ever, different from algorithm Basic, algorithm SLR com-
pares the SL ratios with the pre-specified SLR threshold α
to determine the best cluster for each transaction. Note that



some transactions might not be suitable in the current clus-
ters. Hence, we define an excess transaction as a transac-
tion whose SL ratio exceeds the SLR threshold α. In each
iteration of the refinement phase, algorithm SLR first com-
putes the support values of items for identifying the large
items and the small items in each cluster. Then, algorithm
SLR searches every cluster to move excess transactions the
excess pool, where all excess transactions are collected to-
gether. After collecting all excess transactions, we compute
the intermediate support values of items for identifying the
large items and the small items in each cluster again. Fur-
thermore, empty clusters are removed. In addition, we read
each transaction tp from the excess pool. In line 8 to line
14 of the refinement phase shown in Figure 3, we shall find
for each transaction the best cluster that is the cluster where
that transaction has the minimal SL ratio after all clusters
are considered. If that ratio is smaller than the SLR thresh-
old, we then move that transaction from the excess pool to
the best cluster found. However, if there is no appropriate
cluster found for that transaction tp, tp will remain in the
excess pool. If there is no movement in an iteration after
all transactions are scanned in the excess pool, the refine-
ment phase terminates. Otherwise, the iteration continues
until there is no further movement identified. After the re-
finement phase completes, there could be some transactions
still in the excess pool that are not thrown into any appro-
priate cluster. These transactions will be deemed outliers in
the final clustering result. In addition, it is worth mentioning
that algorithm SLR is able to support the incremental clus-
tering in such a way that those transactions added dynam-
ically can be viewed as new members in the excess pool.
Then, algorithm SLR will allocate them into the appropri-
ate clusters based on their SL ratios in existing clusters. By
treating the incremental transactions as new members in the
excess pool, algorithm SLR can be applied to clustering the
incremental data efficiently.

3.2 Illustrative Example of SLR

Suppose the clustering U0 =< C1, C2, C3 > shown in
Figure 1 is the clustering resulted by the allocation phase.
The cost of U0 examined by the similarity measurement
is shown Figure 2. In this experiment, the minimum sup-
port S = 60%, the maximal ceiling E = 30%, and the SLR
threshold α = 3

2 . In the refinement phase shown in Figure
4, algorithm SLR computes the SL ratio for each transac-
tion and reclusters the transactions whose SL ratios exceed
α. Figure 5 is the final clustering U1 =< C01, C02, C03 >
obtained by applying algorithm SLR to the clustering U0.
First, algorithm SLR scans the database and counts the sup-
ports of items shown in Figure 1. In C1, the support of
item A is 20% and the support of item B is 80%. Then,
algorithm SLR identifies the large and small items shown

/*Allocation phase*/
1)   Whilenot end of the file do {
2)     Read the next transaction t;
3)     Allocate t to an existing or a new cluster Ci to minimize Cost(U);
4)     Write <t,Ci>;
5)   } /*while*/

/*Refinement phase*/
1)   do{
2)     not_moved=false;
3)     calculate each cluster’s minimum support, large items and small items;
4)     move out all excess transactions from each cluster to excess pool;
5)     eliminate any empty cluster;
6)     afresh calculate each cluster's minimum support, large items and small items;
7)     whilenot end of excess pool {
8)       Read the next transaction tp from excess pool;
9)       Search for the best choosing cluster Cj that tp will have the smallest SLR

in Cj;
10)     if find Cj {
11)        remove tp from excess pool; 
12)        move tp to cluster Cj;
13)        not_moved=true;
14)     } /*if*/
15)   } /*while*/
16) } while (not_moved); /*do*/

Figure 3. The overview of algorithm SLR.

in Figure 2. In C1, item A is a small item and item B is a
large item. For the transactions in each cluster, algorithm
SLR computes their SL ratios in that cluster. In C1, the
large items are {B, D} and the small items are {A, C, F,
G, H, I}. For transaction TID 120, item {A} is a small
item and items {B, D} are large items. Thus, the SL ra-
tio of TID 120 is SLRItem(C1, 120) = 1

2 which is smaller
than α. However, for transaction TID 140, items {F, H} are
small items and item {D} is the only large one. The SL ra-
tio of TID 140 is SLRItem(C1, 140) = 2

1 , larger than α.
After the SL ratios of all transactions are determined, algo-
rithm SLR shall identify the excess transactions and move
them into the excess pool. Three transactions, i.e., TIDs
140, 150, and 330, are identified as the excess transactions
as shown in Figure 2. After collecting all excess transac-
tions, we compute the intermediate support values of items
for identifying the large items and the small items in each
cluster again. The intermediate clustering of U0 is shown in
Figure 4. For each transaction in the excess pool, algorithm
SLR will compute its SL ratios associated with all clusters,
except the cluster that transaction comes from. Note that
an item that is not shown in the cluster Ci can be viewed
as a small item because its support will be one when the
corresponding transaction is added into Ci. For transaction
TID 140 moved from C1, SLRItem(C2, 140) = 3

0 = ∞
with three small items {D, F, H} in C2. On the other
hand, SLRItem(C3, 140) = 1

2 with one small item {F}
and two large items {D, H} in C3. For transaction TID 140,
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the smallest SL ratio is SLRItem(C3, 140) = 1
2 which is

smaller than α = 3
2 . Thus, transaction TID 140 is reclus-

tered to C3. Figure 4 shows that algorithm SLR utilizes the
SL ratios to recluster transactions to the most appropriate
clusters. The resulting clustering is U1 =< C01, C02, C03 >.
In the new clustering, algorithm SLR will compute the sup-
port values of items for all clusters. Figure 5 shows the
supports of the items in C01, C02,and C 03. Algorithm SLR
proceeds until no more transaction is reclustered. The clus-
teringU1 is also the final clustering for this example and the
final cost CostI(U1) = 5, which is smaller than the initial
cost CostI(U0) = 9.

4 Experimental Results

To assess the performance of algorithm SLR and algo-
rithm Basic, we conducted several experiments for cluster-
ing various data. We comparatively analyze the quality and
performance between algorithm SLR and algorithm Basic
in the refinement phase.

4.1 Data Generation

We take the real data sets of the United States Congres-
sional Votes records in 1984 [1] for performance evalua-
tion. The file of 1984 United States congressional votes
contains 435 records, each of which includes 16 binary at-
tributes corresponding to every congressman’s vote on 16
key issues, e.g., the problem of the immigration, the duty of
export, and the educational spending, and so on. There are
168 records for Republicans and 267 for Democrats. We
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Figure 5. The clustering U1 =< C 01, C02, C 03 >
obtained by algorithm SLR.

set the minimum support to 60%, which is the same as the
minimum support setting in [8] for comparison purposes.

To provide more insight into this study, we use a well-
known market-basket synthetic data in [2], as the synthetic
data for performance evaluation. This code will generate
volumes of transaction data over a large range of data char-
acteristics. These transactions mimic the transactions in the
real world retailing environment. The size of the transaction
is picked from a Poisson distribution with mean |T|, which
is set to 5 in our Experiments. In addition, the average size
of the maximal potentially large item sets, denoted by |I|, is
set to 2. The number of maximal potential large item sets,
denoted by |L|, is set to 2000. The number of items, denoted
by |N|, is set to 1000 as default.

4.2 Performance Study

In the experiment for the real data, S = 0.6 and α = 2.5,
and λ varies from 0.4 to 1, where λ is the damping factor.
Figure 6 shows the results of two clusters, cluster 1 for Re-
publicans and cluster 2 for Democrats. It shows that these
two results are similar to each other in the percentages of
the issues in cluster 1 and cluster 2. Recall that an iteration
is a refinement procedure from one clustering to the next
clustering. Figure 7 shows the comparison of the execution
time between algorithm SLR and algorithm Basic in each it-
eration. It can be seen that although algorithm SLR has one
more iteration than algorithm Basic, the execution time of
algorithm SLR is much shorter than that of algorithm Basic
in every iteration.

We next use the synthetic data mentioned above in the
following experiments. It is shown by Figure 8 that as
the database size increases, the execution time of algorithm
Basic increases rapidly whereas that of algorithm SLR in-
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creases linearly, indicating the good scale-up feature of al-
gorithm SLR.

5 Conclusion

In view of the nature of clustering for market basket data,
we devised in this paper a novel measurement, called the
small-large ratio. We have developed an efficient clustering
algorithm for data items to minimize the SL ratio in each
group. The proposed algorithm is able to cluster the data
items very efficiently. This algorithm not only incurs an
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execution time that is significantly smaller than that by prior
work but also leads to the clustering results of very good
quality.
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