Dakshi Agrawal and Charu C. Aggarwal
T J Watson Research Center
IBM Corporation
Hawthorne, NY 10532
USA

On the Design and Quantification of Privacy Preserving Data Mining Algorithms

http://www.research.ibm.com/people/a/agrawal
Outline

- Problem Statement
- Quantification of Privacy
- Quantification of Information Loss
- EM Algorithm for Distribution Reconstruction
- Empirical Results
- Discussion
Motivation

Problem Statement:

Consider a set of \(n \) original data values \(x_1, x_2, \ldots, x_n \), drawn independently according to the density function \(f_X(x) \), and a set of \(n \) perturbation values \(y_1, y_2, \ldots, y_n \), drawn independently according to the density function \(f_Y(y) \). Given the perturbed values \(z_1 = x_1 + y_1, z_2 = x_2 + y_2, \ldots, z_n = x_n + y_n \), and the density function \(f_Y(y) \), estimate the density function \(f_X(x) \).

Notes:

- Agrawal and Srikant provide an algorithm (AS algorithm) to estimate \(f_X(x) \), and quantify its performance (privacy versus information-loss trade-off) by using heuristic metrics.
Quantification of Privacy

AS Metric of Privacy:

If it [an attribute] can be estimated with \(c \% \) confidence that a value \(x \) lies in the interval \([x_1, x_2]i\), then the interval width \((x_2 - x_1)\) defines the amount of privacy at \(c \% \) confidence level.

<table>
<thead>
<tr>
<th>Distribution ((2\alpha))</th>
<th>50% Confidence</th>
<th>95% Confidence</th>
<th>99.9 % Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform ((2\alpha))</td>
<td>(0.5 \times (2\alpha))</td>
<td>(0.95 \times (2\alpha))</td>
<td>(0.999 \times (2\alpha))</td>
</tr>
</tbody>
</table>

- **AS Metric is intuitive but not precise**
Quantification of Privacy

(Example)

- Privacy (AS Metric) = 2 at confidence level 100%
- However, it is easy to see that in the above example, the privacy is really 1 at confidence level 100%.
- AS metric of privacy does not depend on the data distribution $f(x)$.
- We need a more precise quantification of privacy.
Quantification of Privacy

\[h(A) = - \int_{\Omega_A} f_A(a) \log_2 f_A(a) \, da \]

- Differential entropy is not an intuitive measure. In particular, it could be negative.

- \(\Pi(A) = 2^{h(A)} \)
Quantification of Privacy

\[h(A|B) = - \int_{\Omega_{A,B}} f_{A,B}(a, b) \log_2 f_{A|B=a}(b) \, da \, db \]

\[\Pi(A|B) = 2^{h(A|B)} \quad (1) \]

\[\mathcal{P}(A|B) = \frac{\Pi(A) - \Pi(A|B)}{\Pi(A)} = 1 - 2^{h(A|B)/2^{h(A)}} \]

\[= 1 - 2^{-I(A;B)} \quad (2) \]
Quantification of Information Loss

Information Loss = half the sum of the mismatched areas

\[I(f_X, \hat{f}_X) = 1 - \text{area shared by both distributions} \]

\[I(f_X, \hat{f}_X) = \frac{1}{2} \mathbb{E} \left[\int_{\Omega_X} |f_X(x) - \hat{f}_X(x)| \, dx \right] \]

- \(0 \leq I(f_X, \hat{f}_X) \leq 1 \)

- \(I(f_X, \hat{f}_X) = 0 \) implies perfect reconstruction of \(f_X(x) \) and \(\hat{f}_X(x) \)

- \(I(f_X, \hat{f}_X) = 1 \) implies that there is no overlap between \(f_X(x) \) and its estimate \(\hat{f}_X(x) \)
EM Algorithm

Properties

- EM algorithm converges to the Maximum-Likelihood Estimate (MLE).

- MLE is *consistent*.

- With a large number of data observations, the EM algorithm will provide zero information loss.
EM Algorithm for Distribution Reconstruction

1. E-step: Compute

\[Q(\Theta, \Theta^k) = E\left[\ln f_{X;\Theta}(X) \middle| Z = z; \Theta^k \right] \]

2. M-step: Update

\[\Theta^{k+1} = \arg\max_{\Theta} Q(\Theta, \Theta^k) \]
EM Reconstruction Algorithm

1. Initialize $\theta_i^0 = \frac{1}{K}$, $i = 1, 2, \ldots, K$; $k = 0$;
2. Update Θ as follows:

$$
\theta_i^{(k+1)} = \theta_i^k \sum_{j=1}^{N} \frac{Pr(Y \in z_j - \Omega_i)}{f_{Z;\Theta^k(z_j)}} \frac{\Pr(Y \in z_j - \Omega_i)}{m_i N};
$$

3. $k = k + 1$;
4. If not termination-criterion then return to Step 2.
Similarities between AS and EM Algorithm

<table>
<thead>
<tr>
<th></th>
<th>AS Algorithm</th>
<th>EM Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
<td>$\theta_i^{(k+1)} = \frac{\theta_i^k \sum_{j=1}^{N} \frac{Pr(Y \in [z_j - \Omega_i])}{f_{Z,\Theta}(z_j)}}{mN}$</td>
<td>$\theta_i^{(k+1)} = \frac{\theta_i^k \sum_{j=1}^{N} \frac{Pr(Y \in [z_j - \Omega_i])}{f_{Z,\Theta}(z_j)}}{m_i N}$</td>
</tr>
<tr>
<td>Approximations</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Complexity</td>
<td>Lower</td>
<td>Higher</td>
</tr>
</tbody>
</table>
Empirical Results
(500 data points)

Reconstructed Uniform Distribution
(AS Algorithm 13.3% Info. Loss)

Reconstructed Uniform Distribution
(EM Algorithm 4.9% Info. Loss)
Empirical Results
(500 data points)

Reconstructed Gaussian Distribution (AS Algorithm 26.5% Info. Loss)

Reconstructed Gaussian Distribution (EM Algorithm 17.9% Info. Loss)
Empirical Results
trade-off between information and privacy loss

Information Loss with Increasing Perturbation

Privacy Loss with Increasing Perturbation
Empirical Results

The Tradeoff between Information Loss and Privacy

- Uniform–Gaussian
- Gaussian–Uniform
- Uniform–Uniform
- Gaussian–Gaussian
Empirical Results

Information Loss with Number of Data Points (Constant Perturbation)
Conclusions

- Derived rigorous metrics for the quantification of privacy and information loss.

- These metrics are *universal* and they provide a sound foundation to compare privacy-preserving data mining algorithms.

- Qualified effectiveness of different perturbing distributions by using these metrics.

- The EM algorithm derived in this paper provably converges to the MLE.

- The estimate generated by EM algorithm results in very little loss for large data sets.