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Abstract. In recent years, privacy preserving data mining has become
an important problem because of the large amount of personal data
which is tracked by many business applications. In many cases, users are
unwilling to provide personal information unless the privacy of sensitive
information is guaranteed. In this paper, we propose a new framework for
privacy preserving data mining of multi-dimensional data. Previous work
for privacy preserving data mining uses a perturbation approach which
reconstructs data distributions in order to perform the mining. Such an
approach treats each dimension independently and therefore ignores the
correlations between the different dimensions. In addition, it requires the
development of a new distribution based algorithm for each data mining
problem, since it does not use the multi-dimensional records, but uses
aggregate distributions of the data as input. This leads to a fundamental
re-design of data mining algorithms. In this paper, we will develop a new
and flexible approach for privacy preserving data mining which does
not require new problem-specific algorithms, since it maps the original
data set into a new anonymized data set. This anonymized data closely
matches the characteristics of the original data including the correlations
among the different dimensions. We present empirical results illustrating
the effectiveness of the method.

1 Introduction

Privacy preserving data mining has become an important problem in recent
years, because of the large amount of consumer data tracked by automated sys-
tems on the internet. The proliferation of electronic commerce on the world wide
web has resulted in the storage of large amounts of transactional and personal
information about users. In addition, advances in hardware technology have also
made it feasible to track information about individuals from transactions in ev-
eryday life. For example, a simple transaction such as using the credit card results
in automated storage of information about user buying behavior. In many cases,
users are not willing to supply such personal data unless its privacy is guaran-
teed. Therefore, in order to ensure effective data collection, it is important to
design methods which can mine the data with a guarantee of privacy. This has
resulted to a considerable amount of focus on privacy preserving data collection
and mining methods in recent years [1], [2], [3], [4], [6], [8], [9], [12], [13].
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A perturbation based approach to privacy preserving data mining was pio-
neered in [1]. This technique relies on two facts:

– Users are not equally protective of all values in the records. Thus, users
may be willing to provide modified values of certain fields by the use of a
(publically known) perturbing random distribution. This modified value may
be generated using custom code or a browser plug in.

– Data Mining Problems do not necessarily require the individual records,
but only distributions. Since the perturbing distribution is known, it can
be used to reconstruct aggregate distributions. This aggregate information
may be used for the purpose of data mining algorithms. An example of a
classification algorithm which uses such aggregate information is discussed
in [1].

Specifically, let us consider a set of n original data values x1 . . . xn. These are
modelled in [1] as n independent values drawn from the data distribution X.
In order to create the perturbation, we generate n independent values y1 . . . yn,
each with the same distribution as the random variable Y . Thus, the perturbed
values of the data are given by x1 + y1, . . . xn + yn. Given these values, and the
(publically known) density distribution fY for Y , techniques have been proposed
in [1] in order to estimate the distribution fX for X. An iterative algorithm has
been proposed in the same work in order to estimate the data distribution fX .
A convergence result was proved in [2] for a refinement of this algorithm. In
addition, the paper in [2] provides a framework for effective quantification of the
effectiveness of a (perturbation-based) privacy preserving data mining approach.

We note that the perturbation approach results in some amount of informa-
tion loss. The greater the level of perturbation, the less likely it is that we will
be able to estimate the data distributions effectively. On the other hand, larger
perturbations also lead to a greater amount of privacy. Thus, there is a natural
trade-off between greater accuracy and loss of privacy.

Another interesting method for privacy preserving data mining is the k-
anonymity model [18]. In the k-anonymity model, domain generalization hier-
archies are used in order to transform and replace each record value with a
corresponding generalized value. We note that the choice of the best general-
ization hierarchy and strategy in the k-anonymity model is highly specific to a
particular application, and is in fact dependent upon the user or domain expert.
In many applications and data sets, it may be difficult to obtain such precise do-
main specific feedback. On the other hand, the perturbation technique [1] does
not require the use of such information. Thus, the perturbation model has a
number of advantages over the k-anonymity model because of its independence
from domain specific considerations.

The perturbation approach works under the strong requirement that the data
set forming server is not allowed to learn or recover precise records. This strong
restriction naturally also leads to some weaknesses. Since the former method does
not reconstruct the original data values but only distributions, new algorithms
need to be developed which use these reconstructed distributions in order to
perform mining of the underlying data. This means that for each individual



A Condensation Approach to Privacy Preserving Data Mining 185

data problem such as classification, clustering, or association rule mining, a new
distribution based data mining algorithm needs to be developed. For example,
the work in [1] develops a new distribution based data mining algorithm for the
classification problem, whereas the techniques in [9], and [16] develop methods for
privacy preserving association rule mining. While some clever approaches have
been developed for distribution based mining of data for particular problems
such as association rules and classification, it is clear that using distributions
instead of original records greatly restricts the range of algorithmic techniques
that can be used on the data. Aside from the additional inaccuracies resulting
from the perturbation itself, this restriction can itself lead to a reduction of the
level of effectiveness with which different data mining techniques can be applied.

In the perturbation approach, the distribution of each data dimension is re-
constructed1 independently. This means that any distribution based data min-
ing algorithm works under an implicit assumption of treating each dimension
independently. In many cases, a lot of relevant information for data mining al-
gorithms such as classification is hidden in the inter-attribute correlations [14].
For example, the classification technique in [1] uses a distribution-based ana-
logue of a single-attribute split algorithm. However, other techniques such as
multi-variate decision tree algorithms [14] cannot be accordingly modified to
work with the perturbation approach. This is because of the independent treat-
ment of the different attributes by the perturbation approach. This means that
distribution based data mining algorithms have an inherent disadvantage of loss
of implicit information available in multi-dimensional records. It is not easy to
extend the technique in [1] to reconstruct multi-variate distributions, because
the amount of data required to estimate multi-dimensional distributions (even
without randomization) increases exponentially2 with data dimensionality [17].
This is often not feasible in many practical problems because of the large number
of dimensions in the data.

The perturbation approach also does not provide a clear understanding of
the level of indistinguishability of different records. For example, for a given level
of perturbation, how do we know the level to which it distinguishes the different
records effectively? While the k-anonymity model provides such guarantees, it
requires the use of domain generalization hierarchies, which are a constraint
on their effective use over arbitrary data sets. As in the k-anonymity model,
we use an approach in which a record cannot be distinguished from at least
k other records in the data. The approach discussed in this paper requires the
comparison of a current set of records with the current set of summary statistics.
Thus, it requires a relaxation of the strong assumption of [1] that the data set

1 Both the local and global reconstruction methods treat each dimension indepen-
dently.

2 A limited level of multi-variate randomization and reconstruction is possible in sparse
categorical data sets such as the market basket problem [9]. However, this specialized
form of randomization cannot be effectively applied to a generic non-sparse data sets
because of the theoretical considerations discussed.
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forming server is not allowed to learn or recover records. However, only aggregate
statistics are stored or used during the data mining process at the server end.

A record is said to be k-indistinguishable, when there are at least k other
records in the data from which it cannot be distinguished. The approach in
this paper re-generates the anonymized records from the data using the above
considerations. The approach can be applied to either static data sets, or more
dynamic data sets in which data points are added incrementally. Our method
has two advantages over the k-anonymity model:
(1) It does not require the use of domain generalization hierarchies as in the
k-anonymity model.
(2) It can be effectively used in situations with dynamic data updates such as the
data stream problem. This is not the case for the work in [18], which essentially
assumes that the entire data set is available apriori.

This paper is organized as follows. In the next section, we will introduce the
locality sensitive condensation approach. We will first discuss the simple case
in which an entire data set is available for application of the privacy preserving
approach. This approach will be extended to incrementally updated data sets
in section 3. The empirical results are discussed in section 4. Finally, section 5
contains the conclusions and summary.

2 The Condensation Approach

In this section, we will discuss a condensation approach for data mining. This
approach uses a methodology which condenses the data into multiple groups of
pre-defined size. For each group, a certain level of statistical information about
different records is maintained. This statistical information suffices to preserve
statistical information about the mean and correlations across the different di-
mensions. Within a group, it is not possible to distinguish different records from
one another. Each group has a certain minimum size k, which is referred to as
the indistinguishability level of that privacy preserving approach. The greater
the indistinguishability level, the greater the amount of privacy. At the same
time, a greater amount of information is lost because of the condensation of a
larger number of records into a single statistical group entity.

Each group of records is referred to as a condensed unit. Let G be a condensed
group containing the records {X1 . . . Xk}. Let us also assume that each record
Xi contains the d dimensions which are denoted by (x1

i . . . xd
i ). The following

information is maintained about each group of records S:

– For each attribute j, we maintain the sum of corresponding values. The
corresponding value is given by

∑k
i=1 xj

i . We denote the corresponding first-
order sums by Fsj(G). The vector of first order sums is denoted by Fs(G).

– For each pair of attributes i and j, we maintain the sum of the product of
corresponding attribute values. This sum is equal to

∑k
t=1 xi

t ·xj
t . We denote

the corresponding second order sums by Scij(G). The vector of second order
sums is denoted by Sc(G).
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– We maintain the total number of records k in that group. This number is
denoted by n(G).

We make the following simple observations:
Observation 1: The mean value of attribute j in group G is given by
Fsj(G)/n(G).
Observation 2: The covariance between attributes i and j in group G is given
by Scij(G)/n(G) − Fsi(G) · Fsj(G)/n(G)2.

The method of group construction is different depending upon whether an
entire database of records is available or whether the data records arrive in an
incremental fashion. We will discuss two approaches for construction of class
statistics:

– When the entire data set is available and individual subgroups need to be
created from it.

– When the data records need to be added incrementally to the individual
subgroups.

The algorithm for creation of subgroups from the entire data set is a straight-
forward iterative approach. In each iteration, a record X is sampled from the
database D. The closest (k − 1) records to this individual record X are added
to this group. Let us denote this group by G. The statistics of the k records in
G are computed. Next, the k records in G are deleted from the database D, and
the process is repeated iteratively, until the database D is empty. We note that
at the end of the process, it is possible that between 1 and (k − 1) records may
remain. These records can be added to their nearest sub-group in the data. Thus,
a small number of groups in the data may contain larger than k data points.
The overall algorithm for the procedure of condensed group creation is denoted
by CreateCondensedGroups, and is illustrated in Figure 1. We assume that the
final set of group statistics are denoted by H. This set contains the aggregate
vector (Sc(G), Fs(G), n(G)) for each condensed group G.

2.1 Anonymized-Data Construction from Condensation Groups

We note that the condensation groups represent statistical information about the
data in each group. This statistical information can be used to create anonymized
data which has similar statistical characteristics to the original data set. This is
achieved by using the following method:

– A d ∗ d co-variance matrix C(G) is constructed for each group G. The ijth
entry of the co-variance matrix is the co-variance between the attributes i
and j of the set of records in G.

– The eigenvectors of this co-variance matrix are determined. These eigenvec-
tors are determined by decomposing the matrix C(G) in the following form:

C(G) = P (G) · ∆(G) · P (G)T (1)
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Algorithm CreateCondensedGroups(Indistinguish. Lvl.: k,
Database: D);

begin
while D contains at least k points do
begin

Randomly sample a data point X from D;
G = {X};
Find the closest (k − 1) records to X and add to G;
for each attribute j compute statistics Fsj(G);
for each pair of attributes i, j compute Scij(G);
Set n(G) = k;
Add the corresponding statistics of group G to H;
D = D − G;

end;
Assign each remaining point in D to the closest group
and update the corresponding group statistics;
end
return(H);

end

Fig. 1. Creation of Condensed Groups from the Data

The columns of P (G) represent the eigenvectors of the covariance matrix
C(G). The diagonal entries λ1(G) . . . λd(G) of ∆(G) represent the corre-
sponding eigenvalues. Since the matrix is positive semi-definite, the corre-
sponding eigenvectors form an ortho-normal axis system. This ortho-normal
axis-system represents the directions along which the second order correla-
tions are removed. In other words, if the data were represented using this
ortho-normal axis system, then the covariance matrix would be the diagonal
matrix corresponding to ∆(G). Thus, the diagonal entries of ∆(G) represent
the variances along the individual dimensions. We can assume without loss
of generality that the eigenvalues λ1(G) . . . λd(G) are ordered in decreasing
magnitude. The corresponding eigenvectors are denoted by e1(G) . . . ed(G).

We note that the eigenvectors together with the eigenvalues provide us with an
idea of the distribution and the co-variances of the data. In order to re-construct
the anonymized data for each group, we assume that the data within each group
is independently and uniformly distributed along each eigenvector with a vari-
ance equal to the corresponding eigenvalue. The statistical independence along
each eigenvector is an extended approximation of the second-order statistical
independence inherent in the eigenvector representation. This is a reasonable
approximation when only a small spatial locality is used. Within a small spatial
locality, we may assume that the data is uniformly distributed without substan-
tial loss of accuracy. The smaller the size of the locality, the better the accuracy
of this approximation. The size of the spatial locality reduces when a larger
number of groups is used. Therefore, the use of a large number of groups leads
to a better overall approximation in each spatial locality. On the other hand,
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the use of a larger number of groups also reduced the number of points in each
group. While the use of a smaller spatial locality improves the accuracy of the
approximation, the use of a smaller number of points affects the accuracy in
the opposite direction. This is an interesting trade-off which will be explored in
greater detail in the empirical section.

2.2 Locality Sensitivity of Condensation Process

We note that the error of the simplifying assumption increases when a given
group does not truly represent a small spatial locality. Since the group sizes are
essentially fixed, the level of the corresponding inaccuracy increases in sparse re-
gions. This is a reasonable expectation, since outlier points are inherently more
difficult to mask from the point of view of privacy preservation. It is also im-
portant to understand that the locality sensitivity of the condensation approach
arises from the use of a fixed group size as opposed to the use of a fixed group
radius. This is because fixing the group size fixes the privacy (indistinguisha-
bility) level over the entire data set. At the same time, the level of information
loss from the simplifying assumptions depends upon the characteristics of the
corresponding data locality.

3 Maintenance of Condensed Groups in a Dynamic
Setting

In the previous section, we discussed a static setting in which the entire data
set was available at one time. In this section, we will discuss a dynamic setting
in which the records are added to the groups one at a time. In such a case, it
is a more complex problem to effectively maintain the group sizes. Therefore,
we make a relaxation of the requirement that each group should contain k data

Algorithm DynamicGroupMaintenance(Database: D,
IncrementalStream: S, DistinguishabilityFactor: k)

begin
H = CreateCondensedGroups(k, D);
for each data point X received from incremental stream S do
begin

Find the nearest centroid in H to X;
Add X to corresponding group statistics M;
if n(M) = 2 · k then (M1, M2) = SplitGroupStatistics(M, k);
Delete M from H;
Add M1 to H;
Add M2 to H;

end
end

Fig. 2. Overall Process of Maintenance of Condensed Groups
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Algorithm SplitGroupStatistics(GroupStatistics: M, GroupSize: k);
begin

Determine covariance matrix C(M);
{ The j, kth entry of the covariance matrix is determined using the
formula Cjk(M) = Scjk(M)/n(M) − Fsj(M) · Fsk(M)/n(M)2; }

Determine eigenvectors e1(M) . . . ed(M) with eigenvalues λ1(M) . . . λd(M);
{ Relationship is C(M) = P (M) · ∆(M) · P (M)T

Here ∆(M) is a diagonal matrix; }
{ Without loss of generality we assume that λ1(M) ≥ . . . ≥ λd(M); }
n(M1) = n(M2) = k;
Fs(M1) = Fs(M)/n(M + e1(M) · √

12 · λ1/4;
Fs(M2) = Fs(M)/n(M) − e1(M) · √

12 · λ1/4;
Construct ∆(M1) and ∆(M2) by dividing diagonal entry λ1 of ∆(M) by 4;
P (M1) = P (M2) = P (M);
C(M1) = C(M2) = P (M1) · ∆(M1) · P (M1)T ;
for each pair of attributes i, j do
begin

Scij(M1) = k · Cij(M1) + Fsi(M1) · Fsj(M1)/k;
Scij(M2) = k · Cij(M2) + Fsi(M2) · Fsj(M2)/k;

end;
end

Fig. 3. Splitting Group Statistics (Algorithm)

a

b

 centroids

+

+

X*

Split Point
a/2

a/2

New 

Fig. 4. Splitting Group Statistics (Illustration)

points. Rather, we impose the requirement that each group should maintain
between k and 2 · k data points.

As each new point in the data is received, it is added to the nearest group,
as determined by the distance to each group centroid. As soon as the number
of data points in the group equals 2 · k, the corresponding group needs to be
split into two groups of k points each. We note that with each group, we only
maintain the group statistics as opposed to the actual group itself. Therefore, the
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splitting process needs to generate two new sets of group statistics as opposed
to the data points. Let us assume that the original set of group statistics to be
split is given by M, and the two new sets of group statistics to be generated are
given by M1 and M2. The overall process of group updating is illustrated by
the algorithm DynamicGroupMaintenance in Figure 2. As in the previous case,
it is assumed that we start off with a static database D. In addition, we have
a constant stream S of data which consists of new data points arriving in the
database. Whenever a new data point X is received, it is added to the group
M, whose centroid is closest to X. As soon as the group size equals 2 · k, the
corresponding group statistics needs to be split into two sets of group statistics.
This is achieved by the procedure SplitGroupStatistics of Figure 3.

In order to split the group statistics, we make the same simplifying assump-
tions about (locally) uniform and independent distributions along the eigenvec-
tors for each group. We also assume that the split is performed along the most
elongated axis direction in each case. Since the eigenvalues correspond to vari-
ances along individual eigenvectors, the eigenvector corresponding to the largest
eigenvalue is a candidate for a split. An example of this case is illustrated in
Figure 4. The logic of choosing the most elongated direction for a split is to
reduce the variance of each individual group as much as possible. This ensures
that each group continues to correspond to a small data locality. This is useful
in order to minimize the effects of the approximation assumptions of uniformity
within a given data locality. We assume that the corresponding eigenvector is
denoted by e1 and its eigenvalue by λ1. Since the variance of the data along e1
is λ1, then the range (a) of the corresponding uniform distribution along e1 is
given3 by a =

√
12 · λ1.

The number of records in each newly formed group is equal to k since the
original group of size 2 · k is split into two groups of equal size. We need to
determine the first order and second order statistical data about each of the
split groups M1 and M2. This is done by first deriving the centroid and zero
(second-order) correlation directions for each group. The values of Fsi(G) and
Scij(G) about each group can also be directly derived from these quantities. We
will proceed to describe this derivation process in more detail.

Let us assume that the centroid of the unsplit group M is denoted by Y (M).
This centroid can be computed from the first order values Fs(M) using the
following relationship:

Y (M) = (Fs1(M), . . . Fsd(M))/n(G) (2)

As evident from Figure 4, the centroids of each of the split groups M1 and M2
are given by Y (M)−(a/4) ·e1 and Y (M)+(a/4) ·e1 respectively. Therefore, the
new centroids of the groups M1 and M2 are given by Y (M) − (

√
12 · λ1/4) · e1

and Y (M)+(
√

12 · λ1/4) ·e1 respectively. It now remains to compute the second
order statistical values. This is slightly more tricky.
3 This calculation was done by using the formula for the standard deviation of a

uniform distribution with range a. The corresponding standard deviation is given by√
a/12.
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Once the co-variance matrix for each of the split groups has been computed,
the second-order aggregate statistics can be derived by the use of the covariance
values in conjunction with the centroids that have already been computed. Let
us assume that the ijth entry of the co-variance matrix for the group M1 is
given by Cij(M1). Then, from Observation 2, it is clear that the second order
statistics of M1 may be determined as follows:

Scij(M1) = k · Cij(M1) + Fsi(M1) · Fsj(M1)/k (3)

Since the first-order values have already been computed, the right hand side
can be substituted, once the co-variance matrix has been determined. We also
note that the eigenvectors of M1 and M2 are identical to the eigenvectors of
M, since the directions of zero correlation remain unchanged by the splitting
process. Therefore, we have:

e1(M1) = e1(M2) = e1(M)
e2(M1) = e2(M2) = e2(M)
e3(M1) = e3(M2) = e3(M)

. . .

ed(M1) = ed(M2) = ed(M)

The eigenvalue corresponding to e1(M) is equal to λ1/4 because the splitting
process along e1 reduces the corresponding variance by a factor of 4. All other
eigenvectors remain unchanged. Let P (M) represent the eigenvector matrix of
M, and ∆(M) represent the corresponding diagonal matrix. Then, the new
diagonal matrix ∆(M1) = ∆(M2) of M1 can be derived by dividing the entry
λ1(M) by 4. Therefore, we have:

λ1(M1) = λ1(M2) = λ1(M)/4

The other eigenvalues of M1 and M2 remain the same:

λ2(M1) = λ2(M2) = λ2(M)
λ3(M1) = λ3(M2) = λ3(M)

. . .

λd(M1) = λd(M2) = λd(M)

Thus, the co-variance matrixes of M1 and M2 may be determined as follows:

C(M1) = C(M2) = P (M1) · ∆(M1) · P (M1)T (4)

Once the co-variance matrices have been determined, the second order aggre-
gate information about the data is determined using Equation 3. We note that
even though the covariance matrices of M1 and M2 are identical, the values
of Scij(M1) and Scij(M2) will be different because of the different first order
aggregates substituted in Equation 3. The overall process for splitting the group
statistics is illustrated in Figure 3.
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3.1 Application of Data Mining Algorithms to Condensed Data
Groups

Once the condensed data groups have been generated, data mining algorithms
can be applied to the anonymized data which is generated from these groups.
After generation of the anonymized data, any known data mining algorithm can
be directly applied to this new data set. Therefore, specialized data mining algo-
rithms do not need to be developed for the condensation based approach. As an
example, we applied the technique to the classification problem. We used a simple
nearest neighbor classifier in order to illustrate the effectiveness of the technique.
We also note that a nearest neighbor classifier cannot be effectively modified to
work with the perturbation-based approach of [1]. This is because the method
in [1] reconstructs aggregate distributions of each dimension independently. On
the other hand, the modifications required for the case of the condensation ap-
proach were relatively straightforward. In this case, separate sets of data were
generated from each of the different classes. The separate sets of data for each
class were used in conjunction with a nearest neighbor classification procedure.
The class label of the closest record from the set of perturbed records is used for
the classification process.

4 Empirical Results

Since the aim of the privacy preserving data mining process was to create a new
perturbed data set with similar data characteristics, it is useful to compare the
statistical characteristics of the newly created data with the original data set.
Since the proposed technique is designed to preserve the covariance structure
of the data, it would be interesting to test how the covariance structure of the
newly created data set matched with the original. If the newly created data set
has very similar data characteristics to the original data set, then the condensed
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data set is a good substitute for privacy preserving data mining algorithms. For
each dimension pair (i, j), let the corresponding entries in the covariance matrix
for the original and the perturbed data be denoted by oij and pij . In order to
perform this comparison, we computed the statistical coefficient of correlation
between the pairwise data entry pairs (oij , pij). Let us denote this value by µ.
When the two matrices are identical, the value of µ is 1. On the other hand, when
there is perfect negative correlations between the entries, the value of µ is −1.

We tested the data generated from the privacy preserving condensation ap-
proach on the classification problem. Specifically, we tested the accuracy of a
simple k-nearest neighbor classifier with the use of different levels of privacy.
The level of privacy is controlled by varying the sizes of the groups used for
the condensation process. The results show that the technique is able to achieve
high levels of privacy without noticeably compromising classification accuracy.
In fact, in many cases, the classification accuracy improves because of the noise
reduction effects of the condensation process. These noise reduction effects result
from the use of the aggregate statistics of a small local cluster of points in order
to create the anonymized data. The aggregate statistics of each cluster of points
often mask the effects of a particular anomaly4 in it. This results in a more
robust classification model. We note that the effect of anomalies in the data are
also observed for a number of other data mining problems such as clustering [10].
While this paper studies classification as one example, it would be interesting to
study other data mining problems as well.

A number of real data sets from the UCI machine learning repository5 were
used for the testing. The specific data sets used were the Ionosphere, Ecoli,
Pima Indian, and the Abalone Data Sets. Except for the Abalone data set, each
of these data sets correspond to a classification problem. In the abalone data
set, the aim of the problem is to predict the age of abalone, which is a regression
modeling problem. For this problem, the classification accuracy measure used
was the percentage of the time that the age was predicted within an accuracy of
less than one year by the nearest neighbor classifier.

The results on classification accuracy for the Ionosphere, Ecoli, Pima Indian,
and Abalone data sets are illustrated in Figures 5(a), 6(a), 7(a) and 8(a) respec-
tively. In each of the charts, the average group size of the condensation groups
is indicated on the X-axis. On the Y-axis, we have plotted the classification ac-
curacy of the nearest neighbor classifier, when the condensation technique was
used. Three sets of results have been illustrated on each graph:

– The accuracy of the nearest neighbor classifier when static condensation was
used. In this case, the static version of the algorithm was used in which the
entire data set was used for condensation.

– The accuracy of the nearest neighbor classifier when dynamic condensation
was used. In this case, the data points were added incrementally to the
condensed groups.

4 We note that a k-nearest neighbor model is often more robust than a 1-nearest
neighbor model for the same reason.

5 http : //www.ics.uci.edu/̃ mlearn
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– We note that when the group size was chosen to be one for the case of static
condensation, the result was the same as that of using the classifier on the
original data. Therefore, a horizontal line (parallel to the X-axis) is drawn in
the graph which shows the baseline accuracy of using the original classifier.
This horizontal line intersects the static condensation plot for a groups size
of 1.

An interesting point to note is that when dynamic condensation is used, the
result of using a group size of 1 does not correspond to the original data. This is
because of the approximation assumptions implicit in splitting algorithm of the
dynamic condensation process. Specifically, the splitting procedure assumed a
uniform distribution of the data within a given condensed group of data points.
Such an approximation tends to lose its accuracy for very small group sizes.
However, it should also be remembered that the use of small group sizes is not
very useful anyway from the point of view of privacy preservation. Therefore,
the behavior of the dynamic condensation technique for very small group sizes
is not necessarily an impediment to the effective use of the algorithm.

One of the interesting conclusions from the results of Figures 5(a), 6(a),
7(a) and 8(a) is that the static condensation technique often provided better
accuracy than the accuracy of a classifier on the original data set. The effects
were particularly pronounced in the case of the ionosphere data set. As evident
from Figure 5(a), the accuracy of the classifier on the statically condensed data
was higher than the baseline nearest neighbor accuracy for almost all group sizes.
The reason for this was that the process of condensation affected the data in two
potentially contradicting ways. One effect was to add noise to the data because of
the random generation of new data points with similar statistical characteristics.
This resulted in a reduction of the classification accuracy. On the other hand,
the condensation process itself removed many of the anomalies from the data.
This had the opposite effect of improving the classification accuracy. In many
cases, this trade-off worked in favor of improving the classification accuracy as
opposed to worsening it.

The use of dynamic classification also demonstrated some interesting results.
While the absolute classification accuracy was not quite as high with the use of
dynamic condensation, the overall accuracy continued to be almost comparable
to that of the original data for modestly sized groups. The comparative behavior
of the static and dynamic condensation methods is because of the additional
assumptions used in the splitting process of the latter. We note that the splitting
process uses a uniformly distributed assumption of the data distribution within a
particular locality (group). While this is a reasonable assumption for reasonably
large group sizes within even larger data sets, the assumption does not work
quite as effectively when either of the following is true:

– When the group size is too small, then the splitting process does not estimate
the statistical parameters of the two split groups quite as robustly.

– When the group size is too large (or a significant fraction of the overall data
size), then a set of points can no longer be said to represent a locality of the
data. Therefore, the use of the uniformly distributed assumption for splitting
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and regeneration of the data points within a group is not as robust in this
case.

These results are reflected in the behavior of the classifier on the dynamically
condensed data. In many of the data sets, the classification accuracy was sensitive
to the size of the group. While the classification accuracy reduced upto the
use of a group size of 10, it gradually improved with increasing groups size. In
most cases, the classification accuracy of the dynamic condensation process was
comparable to that on the original data. In some cases such as the Pima Indian
data set, the accuracy of the dynamic condensation method was even higher
than that of the original data set. Furthermore, the accuracy of the classifier
on the static and dynamically condensed data was somewhat similar for modest
group sizes between 25 to 50. One interesting result which we noticed was for
the case of the Pima Indian data set. In this case, the classifier worked more
effectively with the dynamic condensation technique as compared to that of
static condensation. The reason for this was that the data set seemed to contain
a number of classification anomalies which were removed by the splitting process
in the dynamic condensation method. Thus, in this particular case, the splitting
process seemed to improve the overall classification accuracy. While it is clear
that the effects of the condensation process on classification tends to be data
specific, it is important to note that the accuracy of the condensed data is quite
comparable to that of the original classifier.

We also compared the covariance characteristics of the data sets. The results
are illustrated in Figures 5(b), 6(b), 7(b) and 8(b) respectively. It is clear that
in each data set, the value of the statistical correlation µ was almost 1 for each
and every data set for the static condensation method. In most cases, the value
of µ was larger than 0.98 over all ranges of groups sizes and data sets. While the
value of the statistical correlation reduced slightly with increasing group size, its
relatively high value indicated that the covariance matrices of the original and
perturbed data were virtually identical. This is a very encouraging result since it
indicates that the approach is able to preserve the inter-attribute correlations in
the data effectively. The results for the dynamic condensation method were also
quite impressive, though not as accurate as the static condensation method. In
this case, the value of µ continued to be very high (> 0.95) for two of the data
sets. For the other two data sets, the value of µ reduced to the range of 0.65 to
0.75 for very small group sizes. As the average group sizes increased to about
20, this value increased to a value larger than 0.95. We note that in order for the
indistinguishability level to be sufficiently effective, the group sizes also needed
to be of sizes at least 15 or 20. This means that the accuracy of the classification
process is not compromised in the range of group sizes which are most useful
from the point of view of condensation. The behavior of the correlation statistic
for dynamic condensation of small group sizes is because of the splitting process.
It is a considerable approximation to split a small discrete number of discrete
points using a uniform distribution assumption. As the group sizes increase, the
value of µ increases because of the robustness of using a larger number of points
in each group. However, increasing group sizes beyond a certain limit has the
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opposite effect of reducing µ (slightly). This effect is visible in both the static
and dynamic condensation methods. The second effect is because of the greater
levels of approximation inherent in using a uniform distribution assumption over
a larger spatial locality. We note that when the overall data set size is large, it is
more effectively possible to simultaneously achieve the seemingly contradictory
goals of using the robustness of larger group sizes as well as the effectiveness
of using a small locality of the data. This is because a modest group size of 30
truly represents a small data locality in a large data set of 10000 points, whereas
this cannot be achieved in a data set containing only 100 points. We note that
many of the data sets tested in this paper contained less than 1000 data points.
These constitute difficult cases for our approach. Yet, the condensation approach
continued to perform effectively both for small data sets such as the Ionosphere
data set, and for larger data sets such as the Pima Indian data set. In addition,
the condensed data often provided more accurate results than the original data
because of removal of anomalies from the data.

5 Conclusions and Summary

In this paper, we presented a new way for privacy preserving data mining of data
sets. Since the method re-generates multi-dimensional data records, existing data
mining algorithms do not need to be modified to be used with the condensation
technique. This is a clear advantage over techniques such as the perturbation
method discussed in [1] in which a new data mining algorithm needs to be
developed for each problem. Unlike other methods which perturb each dimension
separately, this technique is designed to preserve the inter-attribute correlations
of the data. As substantiated by the empirical tests, the condensation technique
is able to preserve the inter-attribute correlations of the data quite effectively. At
the same time, we illustrated the effectiveness of the system on the classification
problem. In many cases, the condensed data provided a higher classification
accuracy than the original data because of the removal of anomalies from the
database.

References

1. Agrawal R., Srikant R.: Privacy Preserving Data Mining. Proceedings of the ACM
SIGMOD Conference, (2000).

2. Agrawal D. Aggarwal C. C.: On the Design and Quantification of Privacy Preserv-
ing Data Mining Algorithms. ACM PODS Conference, (2002).

3. Benassi P. Truste: An online privacy seal program. Communications of the ACM,
42(2), (1999) 56–59.

4. Clifton C., Marks D.: Security and Privacy Implications of Data Mining. ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discove
ry, (1996) 15–19.

5. Clifton C., Kantarcioglu M., Vaidya J.: Defining Privacy for Data Mining. National
Science Foundation Workshop on Next Generation Data Mining, (2002) 126–133.



A Condensation Approach to Privacy Preserving Data Mining 199

6. Vaidya J., Clifton C.: Privacy Preserving Association Rule Mining in Vertically
Partitioned Data. ACM KDD Conference, (2002).

7. Cover T., Thomas J.: Elements of Information Theory, John Wiley & Sons, Inc.,
New York, (1991).

8. Estivill-Castro V., Brankovic L.: Data Swapping: Balancing privacy against pre-
cision in mining for logic rules. Lecture Notes in Computer Science Vol. 1676,
Springer Verlag (1999) 389–398.

9. Evfimievski A., Srikant R., Agrawal R., Gehrke J.: Privacy Preserving Mining Of
Association Rules. ACM KDD Conference, (2002).

10. Hinneburg D. A., Keim D. A.: An Efficient Approach to Clustering in Large Mul-
timedia Databases with Noise. ACM KDD Conference, (1998).

11. Iyengar V. S.: Transforming Data To Satisfy Privacy Constraints. ACM KDD
Conference, (2002).

12. Liew C. K., Choi U. J., Liew C. J.: A data distortion by probability distribution.
ACM TODS Journal, 10(3) (1985) 395-411.

13. Lau T., Etzioni O., Weld D. S.: Privacy Interfaces for Information Management.
Communications of the ACM, 42(10) (1999), 89–94.

14. Murthy S.: Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery, Vol. 2, (1998), 345–
389.

15. Moore Jr. R. A.: Controlled Data-Swapping Techniques for Masking Public Use
Microdata Sets. Statistical Research Division Report Series, RR 96-04, US Bureau
of the Census, Washington D. C., (1996).

16. Rizvi S., Haritsa J.: Maintaining Data Privacy in Association Rule Mining. VLDB
Conference, (2002.)

17. Silverman B. W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, (1986).

18. Samarati P., Sweeney L.: Protecting Privacy when Disclosing Information: k-
Anonymity and its Enforcement Through Generalization and Suppression. Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy, (1998).


	Introduction
	The Condensation Approach
	Anonymized-Data Construction from Condensation Groups
	Locality Sensitivity of Condensation Process

	Maintenance of Condensed Groups in a Dynamic Setting
	Application of Data Mining Algorithms to Condensed Data Groups

	Empirical Results
	Conclusions and Summary

