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Abstract

A key method for privacy preserving data mining is
that of randomization. Unlikek-anonymity, this technique
does not include public information in the underlying as-
sumptions. In this paper, we will provide a first compre-
hensive analysis of the randomization method in the pres-
ence of public information. We will define a quantifica-
tion of the randomization method which we refer to ask-
randomization of the data. The inclusion of public informa-
tion in the theoretical analysis of the randomization method
results in a number of interesting and insightful conclu-
sions. These conclusions expose some vulnerabilities of
the randomization method. We show that the randomiza-
tion method is unable to effectively achieve privacy in the
high dimensional case. We theoretically quantify the degree
of randomization required to guarantee privacy as a func-
tion of the underlying data dimensionality. Furthermore, we
show that the randomization method is susceptible to many
natural properties of real data sets such as clusters or out-
liers. Finally, we show that the use of public information
makes the choice of perturbing distribution very critical in
a number of subtle ways. Our analysis shows that the inclu-
sion of public information in the analysis makes the goal of
privacy preservation more elusive than previously thought
for the randomization method.

1 Introduction

In recent years, advances in technology have lead to in-
creased storage of data about individuals by corporations
and government entities. This has increased concerns about
the possibility of compromising personal information, and
has spawned the research area of privacy-preserving data
mining [1, 2, 5, 7, 10, 11, 12].

Two important privacy models are those ofk-anonymity
and randomization. Ink-anonymity [11], we reduce the rep-
resentational accuracy of a record, so that it cannot be linked
to less thank public records containing identifier informa-

tion. In randomization [1, 2], we add a perturbing distri-
bution to the original data. Even though individual record
values are distorted, it is possible to accurately reconstruct
aggregate distributions and design data mining algorithms
which work with these distributions. One nice characteristic
of thek-anonymity model is that it is specifically designed
to guarantee privacy in the presence of public information.
This is not true of randomization, since the added noise is
drawn from a fixed distribution. This paper is designed to
introduce the analytical effects of public information into
the analysis of randomization. Earlier work on randomiza-
tion [8, 9] uses spectral analysis to approximately recon-
struct attributevalueswithout the use of public information.
However, attribute value approximation is a subtly different
goal frompersonalidentification with the use of linkage to
public databases. To our knowledge, this is the first com-
prehensive treatment of the randomization method in the
presence of public information. We introduce the concept
of k-randomization as a tool for measurement, and make
the following contributions:
(1) This paper provides a first public-information sensitive
methodology to analyze the randomization approach.
(2) As in the case ofk-anonymity [3], the effectiveness of
randomization degrades rapidly with increasing dimension-
ality. We quantify the required perturbation to achieve a
given privacy level as a function of dimensionality.
(3) The use of public information makes the choice of per-
turbing distribution more critical than previously thought.
We analyze two widely used perturbing distributions (gaus-
sian and uniform) and show that gaussian perturbations
have overwhelming advantages in high dimensional cases.
(4) The use of public information in the analysis exposes the
susceptibility of the randomization method to many natural
properties of real data sets such as clusters or outliers.
(5) The paper demonstrates that the inclusion of public in-
formation makes the randomization method vulnerable in
unexpected ways. Thus, the goal of privacy preservation
may be more elusive than previously thought for the ran-
domization method.

This paper is organized as follows. In the next section,



we discuss how to quantify the risk of disclosure in the pres-
ence of public information. In section 3, we analyze the ef-
fects of dimensionality and data distribution. In section 4,
we present the experimental results. Section 5 discusses the
conclusions and discussions.

2 Effects of Public Information

In this section, we will introduce the concepts of like-
lihood fit andk-randomization which quantify the ability
to re-identify the data in the presence of public informa-
tion. This creates an analogous randomization framework
to that of k-anonymity. We assume that the databaseD
containsN records andd dimensions. The random per-
turbations for the different dimensions have distributions
denoted byfY1

(y) . . . fYd
(y). The corresponding standard

deviations of these distributions are denoted byσ1 . . . σd.
Without loss of generality, we may assume that each of
the perturbing distributions has zero mean. Let us con-
sider a recordX = (x1 . . . xd) to which the perturbation
Y = (y1 . . . yd) is added. Then the perturbed data is de-
noted byZ = (z1 . . . zd) = (x1 + y1, . . . xd + yd). Now
let us consider an adversary who has access to the publicly
available databaseDp. Since the perturbing distribution is
publicly known, the adversary can calculate thepotential
perturbation of the recordZ with respect to each record in
the public databaseDp. This can be used to calculate the
probability that these set ofd-dimensional perturbations fit
the set of distributions denoted byfY1

(y) . . . fYd
(y). The

natural way of calculating the fit of a set of models to a set
of observations is thelog-likelihood fit. In the event that
one of the records in the public database has an unusually
high degree of fit, this allows the adversary the ability to
guess whether the current record truly corresponds to any
particular record in the public database.

Let us consider the public recordX = (x1 . . . xd). We
would like to calculate the likelihood that the perturbed
recordZ = (z1 . . . zd) corresponds to this publicly avail-
able record. In order to do so, the adversary can compute the
potential fitof the perturbed record to the public database
recordX. Next, we define thepotential perturbationof a
given recordZ to the public database recordX.

Definition 2.1 The potential perturbationQ(Z,X) of a
perturbed recordZ = (z1 . . . zd) with respect to the public
database recordX = (w1 . . . wd) is denoted byQ(Z,X) =
(q1(Z,X) . . . qd(Z,X)) = Z −X = (z1 −x1 . . . zd −xd).
Theith component ofQ(Z,X) is denoted byqi(Z,W ) =
zi − xi.

The above definition simply states that in order for the pub-
lic database recordX to correspond to the perturbed record
Z, the perturbation for theith dimension would need to be
qi(Z,X) = zi −xi. What is the likelihood that the publicly

known perturbing distributionsfYi
(y) generate these poten-

tial perturbations over thed different dimensions? We note
that the log-likelihood that the modelfYi

(y) fits the poten-
tial perturbationqi(Z,X) is given by log(fYi

(qi(Z,X))) =
log(fYi

(zi −xi)). We define the correspondingpotential fit
of the dimensions inQ(Z,X) to the distributions denoted
by fY1

(y) . . . fYd
(y) as the sum of the log-likelihood fits

over the different dimensions.

Definition 2.2 The potential fit F(Z,X) of the
perturbed data Z to the record X is given by
∑d

i=1 log(fYi
(qi(Z,X))).

The higher the value of the log-likelihood fit, the greater the
probability that the public database recordX corresponds
to the perturbed dataZ. For a given public databaseDp, an
adversary can try to match the record inDp which has the
highest level of fit to the perturbed recordZ. We observe
that the log likelihood fit is an indirect representation of the
Bayes a-posteriori probability that the perturbed data record
fits a particular recordX:

Observation 2.1 Consider a databaseDp which is known
to contain the true representation of the perturbed recordZ
with equal a-priori probability. Then the posterior proba-
bility B(Z,X,Dp) of a particular recordX ∈ Dp to corre-
spond toZ is given by:

B(Z,X,Dp) =
eF(Z,X)

∑

V ∈Dp
eF(Z,V )

(1)

The above observation is easy to verify, since the pertur-
bations over different dimensions are independent and the
value ofeF(Z,X) is simply equal to the product of the cor-
responding probability densities. By applying the Bayes
formula in conjunction with equal a-priori probability, we
get the desired result. Thus, the log likelihood is an indirect
representation of the Bayes probability, and the use of this
particular representation is chosen for the sake of numerical
and algebraic convenience.

In many cases, the log likelihood fit can provide con-
siderable insights to an adversary in including or excluding
particular database records. For example, the log likelihood
fit may be a significantly better fit to one record in the pub-
lic database compared to any other record. In such a case,
the corresponding Bayes probabilityB(Z,X,Dp) may ap-
proach 1, and the said record can be identified to a high
degree of probability. Therefore, anonymity is lost. An-
other extreme case is one in which the perturbing distribu-
tion has a finite range (such as the uniform distribution), and
the value offYi

(qi(Z,X)) to be zero. In such a case, the
corresponding log likelihood fit is−∞, and it is possible to
exclude the recordX as a fit withZ.

In general, we would like the perturbation to be suffi-
cient, so that at least some other spurious records in the data



set have a higher fit to the correct public database record
than the true record. Larger perturbations reduce the log-
likelihood fit of the true recordX ∈ D corresponding toZ,
and increase the probability that another spurious record in
D may have a higher log-likelihood fit thanX by chance.
This is desirable from the point of view of privacy preser-
vation. When there are at leastk records inD which have
higher (or equal) log likelihood fit thanX, then the record
X is said to bek-randomized. In such a case, no public
database can be used to distinguishX from the k other
records withinD which are a better fit to the randomized
representation ofX. Now, we will define the concept of
k-randomization formally.

Definition 2.3 A (randomized) recordZ ∈ D with original
representationX is said to bek-randomized when there are
at leastk records{X1 . . . Xk} ∈ D for which the following
is true:

F(Z,X) ≤ F(Z,Xi) (2)

This means that the randomized recordZ cannot be used
to distinguish its true representationX from thek records
X1 . . . Xk in D. By performingk-randomization of ev-
ery record in the databaseD, it is possible to achieve an
equivalent level ofk-anonymity for the randomization ap-
proach. However, since the randomization approach does
not use a trusted server and can be performed atdata col-
lection time(without knowledge of other records), the ex-
act level of randomization may not be known or precisely
controlled a-priori. This is different from thek-anonymity
model which performs the privacy transformation in a con-
trolled way so as to explicitlyengineerk-anonymity. Here,
our aim in defining the randomization level of a record is to
use it as ananalytical toolfor judging the effectiveness of a
given level of perturbation. The only a-priori control param-
eter is the perturbation standard deviation, and the random-
ization level is computed a-posteriori. Thus, thecalculated
randomization level of a pointX is denoted bykr(X) and
is equal to the number of randomized points in the database
which fit the randomized version ofX at least as well as
(the randomized representation of)X itself. We make the
following observation about the expected value ofkr(X):

Observation 2.2 Let X = (x1 . . . xd) be ad-dimensional
point from the databaseD. Let Z = (z1 . . . zd) represent
the randomization ofX. Then, the expected randomization
levelE[kr(X)] is as follows:

E[kr(X)] =
∑

X′∈D

P (F(Z,X ′) ≥ F(Z,X)) (3)

As in the case ofk-anonymity, this value is at least 1 to
account for the case whenX ′ = X. Next, we generalize
the point specific randomization level to the entire database.

Definition 2.4 The average randomization level of the
databaseD is defined as the average value ofkr(X) over
all points inD.

Since the calculated randomization levelkr(X) may vary
with data pointX, we also define a worst-case quantifica-
tion. In this context, we define the randomization level at
quantileq.

Definition 2.5 The randomization level of databaseD at
quantileq is computed as the lowest quantileq of the ran-
domization level arraykr(·).
The average and worst case behaviors provide different
kinds of insights. In the next section, we will use these
quantifications to analyze the effects of different kinds of
data sets, dimensionality, and perturbing distributions.

3 Effects of High Dimensionality

In this section, we will analyze the effect of different
perturbing distributions on the effectiveness of randomiza-
tion. We will also analyze the effects of dimensionality on
the effectiveness of randomization. The two most common
distributions used for perturbation are the uniform and the
gaussian distribution [1]. In this section, we will analyze
the effects of both.

3.1 Gaussian Perturbing Distribution

The gaussian perturbation with standard deviationσi on
theith dimension is defined as follows:

fY (y) =
1√

2 · πσi

e
−

y2

2·σ2

i (4)

Let us consider the recordX = (x1 . . . xd) which is
perturbed to the randomized record denoted byZ =
(z1 . . . zd). Then, the log likelihood fitF(Z,X) is
given by F(Z,X) =

∑d

i=1 log(fYi
(qi(Z,X))) =

∑d

i=1 log(fYi
(zi−xi)). By substituting the value offYi

(y)
according to Equation 4, we get:

F(Z,X) = −(d/2)·log(2·π)−
d
∑

i=1

log(σi)−
d
∑

i=1

(zi − xi)
2

2 · σ2
i

(5)
Let us now consider another recordX ′ = (x′

1 . . . x′
d) ∈ D

which is in the neighborhood ofX. We would like to cal-
culate the probability that the likelihood fitF(Z,X ′) is at
least equal to that ofF(Z,X). As evident from Observation
2.2, this probabilityP (F(Z,X ′) ≥ F(Z,X)) plays a key
role in defining the expected randomization levelE[kr(X)].
Therefore, our future analysis will quantify the value of
P (F(Z,X ′) ≥ F(Z,X)). We will show the following re-
sult about this probability:



Lemma 3.1 Let X = (x1 . . . xd) and X ′ = (x′
1 . . . x′

d)
be the twod-dimensional points from the databaseD, such
that ∆ = (δ1 . . . δd) = X − X ′. Let Z = (z1 . . . zd) rep-
resents the randomization ofX andσ2

i be the variance of
the gaussian perturbation along theith dimension. Then,
we have:

P (F(Z, X′) ≥ F(Z, X)) = P

(

d
∑

i=1

δ2
i /(2σ2

i ) ≤

d
∑

i=1

−δi · yi/σ2
i

)

(6)

Here yi is the random variable representing the gaussian
perturbation along theith dimension.

Proof: By substituting the values ofF(Z,X) and
F(Z,X ′) from Equation 5, and canceling the common
terms, we get:

P (F(Z,X ′) ≥ F(Z,X)) =

=P
(

∑d

i=1 −(zi − x′
i)

2/σ2
i ≥∑d

i=1 −(zi − xi)
2/σ2

i

)

=P
(

∑d

i=1(zi − xi + δi)
2/σ2

i ≤∑d

i=1(zi − xi)
2/σ2

i

)

The last relationship is obtained by replacingX ′ = X −∆,
and reversing the sign of the inequality by negating both
sides. Now, we note thatzi − xi is simply the value of
the random perturbationyi which is derived from a gaus-
sian distribution. Therefore, let us replacezi − xi by yi for
algebraic convenience. Therefore, we have:

P (F(Z, X′) ≥ F(Z, X)) = P

(

d
∑

i=1

(yi + δi)
2/σ2

i ≤

2
∑

i=1

y2
i /σ2

i

)

(7)

= P
(

∑d

i=1 δ2
i /(2 · σ2

i ) ≤ −
∑d

i=1 δi · yi/σ2
i

)

The last relationship is obtained by simple algebraic expan-
sion of(yi + δi)

2 and subsequent simplification.
While the above lemma provides an algebraic expression
for this bound, a more intuitive interpretation with respect to
dimensionality and distribution needs to be constructed. In
order to do so, we will make use of the well known Cheby-
chev inequality. First, we will prove a simple lemma which
we will need in a later section.

Lemma 3.2 Let yi be the gaussian perturbation along the
ith dimension with varianceσ2

i . LetV = −∑d

i=1 yi·δi/σ2
i .

Then, we have:

E[V 2] =

d
∑

i=1

δ2
i /σ2

i (8)

Proof: We note thaty1 . . . yd are independent perturbations
along thed dimensions. Therefore, by expanding the ex-
pression forV 2, and using independence to simplify expec-
tation of products of random variables, we get:

E[V 2] =

d
∑

i=1

δ2
i ·E[y2

i ]/σ4
i +2·

d
∑

i=1

d
∑

j=i+1

δi·δj ·E[yi]·E[yj ]/(σ2
i ·σ

2
j )

(9)

Sinceyi is a gaussian with varianceσ2
i about a mean of

zero, we haveE[yi] = 0 andE[y2
i ] = σ2

i . By substituting
this in Equation 9, we get the desired result.

Theorem 3.1 Let X = (x1 . . . xd) and X ′ = (x′
1 . . . x′

d)
be twod-dimensional points from the databaseD, such that
∆ = (δ1 . . . δd) = X − X ′. Let Z represent the random-
ization ofX andσ2

i be the variance of the gaussian pertur-
bation along theith dimension. Then, we have:

P (F(Z,X ′) ≥ F(Z,X)) ≤ 4/(
d
∑

i=1

δ2
i /σ2

i ) (10)

Proof: As in Lemma 3.2, let us defineV = −∑ yi · δi/σ2
i .

From Lemma 3.1, we get:

P (F(Z,X ′) ≥ F(Z,X)) = P

(

d
∑

i=1

δ2
i /(2 · σ2

i ) ≤ V

)

(11)

≤ P
(

V 2 ≥ (
∑d

i=1 δ2
i /(2 · σ2

i ))2
)

(squaring both sides

and
recognizing thatδ2

i /(2 · σ2
i ) is always positive)

≤ E[V 2]/(
∑d

i=1 δ2
i /(2 · σ2

i ))2 (Chebychev Inequality)

By substituting the expression forE[V 2] from Lemma 3.2,
we get the desired result.
We note that the variance of the perturbing distribution
along each dimension is typically chosen proportional to the
corresponding variance of the original data. This is a natu-
ral choice in order to provide a similar level of perturbation
over the different dimensions.

Assumption 3.1 Proportionality Assumption: If the
variance of the original data along theith dimension is de-
noted byσo

i , then the perturbing varianceσi is chosen such
thatC1 · σi ≤ σo

i ≤ C2 · σi for some constantsC1 andC2.

The proportionality assumption automatically helps us re-
word the results of Theorem 3.1 as follows:

Theorem 3.2 Let X = (x1 . . . xd) and X ′ = (x′
1 . . . x′

d)
be twod-dimensional points from the databaseD, such that
∆ = (δ1 . . . δd) = X − X ′. LetZ = (z1 . . . zd) represents
the randomization ofX. Letσ2

i be the variance of the gaus-
sian perturbation along theith dimension, and(σo

i )2 be the
variance of the original data along dimensioni. Then, un-
der the proportionality assumption, for some constantC3,
we have:

P (F(Z,X ′) ≥ F(Z,X)) ≤ C3/(
d
∑

i=1

δ2
i /(σo

i )2) (12)



We note that denominator of the right hand side of the rela-
tionship of Theorem 3.2 contains the term

∑d

i=1 δ2
i /(σo

i )2).
This is simply the distance betweenX andX ′, when the
original data is normalized by the variance along each di-
mension. Therefore, it is intuitively clear that a data point
X ′ which is spatially close toX has a higher chance of
satisfying the requirementF(Z,X ′) ≥ F(Z,X) which in-
creases the randomization level ofX. However, with in-
creasing dimensionality, the concept of spatial locality be-
comes more problematic. According to [6], the sparsity
of high dimensional data ensures that the distance to other
points in the data

∑d

i=1 δ2
i /(σo

i )2) grows withd∗ in high
dimensional space, whered∗ is the implicit dimensionality
of the data. Therefore, even ifX ′ is chosen to be the near-
est neighbor ofX, the value ofP (F(Z,X ′) ≥ F(Z,X))
tends to zero with increasing value ofd. From Observation
2.2, the expected randomization levelE[kr(X)] is critically
dependent upon this probability, and therefore, the random-
ization level ofX also reduces with increasing dimension-
ality. We summarize this result as follows:

Conclusion 3.1 The expected randomization level reduces
with increasing dimensionality for a fixed level of perturba-
tion.

How strong is this revealing effect of high dimension-
ality? We note that the Chebychev inequality is extremely
weak in practice. Therefore, the above results represent a
fairly weak bound. In practice, it is possible to get much
tighter bounds with the use of a few approximations on
Lemma 3.1. We note that the right hand side of Lemma 3.1
containsV = −∑d

i=1 yi · δi/σ2
i . Since eachyi is indepen-

dent, the variance ofV is equal to the sum of the individual
variances. This works out toσ2(V ) =

∑d

i=1 δ2
i /σ2

i . We
further note thatE[V ] = 0. Now, we make the approxima-
tion thatV is normally distributed. This may be fairly close
to the truth for large values ofd, since each component of
V (which is−yi · δi/σ2

i ) is a unit normal distribution scaled
by δi/σi.

The right hand side of Lemma 3.1 can be expressed
as P (V ≥

∑d

i=1 δ2
i /(2 · σ2

i )) = 1 − Φ((
∑d

i=1 δ2
i /(2 ·

σ2
i ))/σ(V )). HereΦ(·) is the cumulative normal distribu-

tion. Sinceσ(V ) =
√

∑d

i=1 δ2
i /σ2

i , we can summarize as
follows:

Approximation 3.1 Let X = (x1 . . . xd) and X ′ =
(x′

1 . . . x′
d) be twod-dimensional points from the database

D, such that∆ = (δ1 . . . δd) = X−X ′. LetZ = (z1 . . . zd)
represents the randomization ofX. Letσ2

i be the variance
of the gaussian perturbation along theith dimension. Then,

we have:

P (F(Z,X ′) ≥ F(Z,X)) = 1 − Φ((

√

√

√

√

d
∑

i=1

δ2
i /σ2

i )/2)

(13)
HereΦ(·) is the cumulative normal distribution. The corre-
sponding expected randomization level of the data pointX
is obtained by summingP (F(Z,X ′) ≥ F(Z,X)) over all
pointsX ′ 6= X in the databaseD.

We note that the cumulative normal distributionΦ(·) is ap-
proximately equal to 1 for an argument value greater than 3.
Therefore, the expression

∑d

i=1 δ2
i /σ2

i needs to be at most
36 in order for the probabilityP (F(Z,X ′) ≥ F(Z,X)) to
not be (nearly) zero. Consider the case of a uniformly dis-
tributed data set in which we pickσi = C · σo. In such a
case, we can show [6] that the distance value

∑d

i=1 δ2
i /σ2

i

grows asd/C2. This means thatC must grow with
√

d
in order for the probabilityP (F(Z,X ′) ≥ F(Z,X)) to be
significantly larger than zero. Since Observation 2.2 ties the
probabilityP (F(Z,X ′) ≥ F(Z,X)) to the expected ran-
domization levelE(kr(X)], this indicates that the value of
C should grow with

√
d for the randomization level to be

constant with increasing dimensionality. While the result of
[6] is true for the case of uniform distribution of the original
data, it provides the intuition that the perturbing standard
deviation along each dimension should grow as the square
root of theimplicit dimensionalityof the data. We summa-
rize this result as follows:

Conclusion 3.2 Under the proportionality assumption, the
perturbing gaussian distribution along each dimension
should have a standard deviation which grows with the
square root of the implicit dimensionality of the underly-
ing data in order to retain the same level of randomization.

In practice, only a small number of data pointsX ′ (which lie
in the locality ofX) are likely to have dominant values for
P (F(Z,X ′) ≥ F(Z,X)) in the right hand side of Observa-
tion 2.2. The value of each of these terms depend inversely
upon the normalized distance

∑d

i=1 δ2
i /(σo

i )2 betweenX
andX ′. Thus, for data sets with the same global variance,
the expected randomization levelE[kr(X)] is likely to be
higher when non-empty localities of the data are dense and
highly clustered. This provides the following result:

Conclusion 3.3 The presence of clusters is helpful in in-
creasing the randomization level for data sets with similar
global variance.

This is a nice property of the randomization method, since
most real data sets exhibit clustered behavior. We further
note that while Approximation 3.1 provides an understand-
ing of the randomization level of each data point, it may



often be more desirable to examine the worst-case ran-
domization behavior of the entire data set. As discussed
earlier, thelocal magnitudes of the normalized distances
∑d

i=1(δi/σo
i )2 have a strong inverse relationship with the

expected randomization levelE[kr(X)]. Therefore, for
data sets with the same global variance, a variation in the
local density distribution can affect the worst-case random-
ization more sharply.

Conclusion 3.4 A data set with varying density distribution
is likely to have a significantly lower worst-case randomiza-
tion level than the average randomization level.

The presence of outliers is the extreme case, since the den-
sity within the locality of an outlier is significantly lower
than the average case density.

Conclusion 3.5 The presence of outliers may reduce the
worst-case randomization level without significantly affect-
ing the average-case randomization behavior of the data.

These results show that the randomization approach is sus-
ceptible to the presence of the density variations and out-
liers. The intuition for this is that unlike methods such ask-
anonymity, the current methods for randomization of indi-
vidual data points are applied without assumption of knowl-
edge about the rest of the data. This is an issue which needs
to be addressed in future research on randomization.

3.2 Uniform Perturbing Distribution

We assume that the perturbation along theith dimension
is uniformly distributed with range[0, ai], and the corre-
sponding standard deviationσi is equal toai/

√
12. For

simplicity, we assume that the range of the perturbationai

is larger than the range of the non-perturbed data along di-
mensioni. This is not really restrictive, since it is needed to
preserve a minimum level of privacy along theith dimen-
sion. Therefore, if∆ = (δ1 . . . δd) = X − X ′, we must
have|δi| ≤ ai.

Theorem 3.3 Let X = (x1 . . . xd) and X ′ = (x′
1 . . . x′

d)
be twod-dimensional points from the randomized database
D, such that∆ = (δ1 . . . δd) = X−X ′ andZ = (z1 . . . zd)
represents the randomization ofX. Let [0, ai] be the range
of the uniform perturbation along theith dimension. Then,
we have:

P (F(Z,X ′) ≥ F(Z,X)) = πd
i=1(1 − |δi|/ai) (14)

Proof: Since the distribution is uniform with density1/ai,
the value ofF(Z,X) is simplyd · log(1/ai). Now we note
that the value ofF(Z,X ′) is defined as follows:

F(Z,X ′) =
d
∑

i=1

log(fY (zi − x′
i)) = (15)

=
∑d

i=1 log(fY (zi − xi + δi)) =
∑d

i=1 log(fY (yi + δi))

Here yi is the uniformly distributed perturbation in the
range [0, ai]. We note that each of thed terms on the
right hand side is either log(1/ai) or −∞ depending upon
whether or not(yi + δi) lies in the range[0, ai]. Therefore
F(Z,X ′) canneverbe larger thanF(Z,X). The value of
F(Z,X ′) can at most be equal toF(Z,X), if and only if
for each and every dimensioni, yi + δi lies in the range
[0, ai]. Sinceyi is uniformly distributed in the range[0, ai],
it is easy to verify that the probability of(yi + δi) lying in
the range[0, ai] is (1−|δi|/ai). By using the independence
of the different values ofyi, the result follows.
A simple corollary of the above result is as follows;

Corollary 3.1 Let X = (x1 . . . xd) andX ′ = (x′
1 . . . x′

d)
be twod-dimensional points from the randomized database
D, such that∆ = (δ1 . . . δd) = X−X ′ andZ = (z1 . . . zd)
represents the randomization ofX. Let [0, ai] be the range
of the uniform perturbation along theith dimension. Then,
we have:

P (F(Z,X ′) ≥ F(Z,X)) ≤ (1−
d
∑

i=1

(|δi|/(d·ai)))
d (16)

Proof: This corollary simply follows from Theorem 3.3 and
the fact that the geometric mean of a set of non-negative
values is at most equal to the arithmetic mean.
As in the previous case, let us examine what happens in a
uniformly distributed data set, when the rangeai is chosen
to beC · σo

i for some constantC using the proportionality
assumption. In this case, the results of [6] indicate that in
the high dimensional case,

∑d

i=1 |δi|/σo
i is expected to in-

crease asB · d for some constantB. Then, we can use the
result of Corollary 3.1 to derive the following;

P (F(Z,X ′) ≥ F(Z,X)) ≤ (1 − B/C)d (17)

Note that when the value ofC is chosen to beB · d, the
value of the above expression is(1−1/d)d. This is bounded
above by1/e, wheree is the base of the natural logarithm.
By choosingC smaller thanB · d, it is possible for this
probabilityP (F(Z,X ′) ≥ F(Z,X)) to fall off rapidly to
zero. This would result in lower randomization levels. We
summarize as follows:

Conclusion 3.6 Under the proportionality assumption, the
perturbing uniform distribution along each dimension
should have a range (or standard deviation) which grows
at least linearly with the implicit dimensionality of the un-
derlying data.

Recall that the in the case of the gaussian distribution, the
required standard deviation grows proportionally only with
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Figure 1. Randomization Level with Increas-
ing Dimensionality, Perturbation level = 8 · σo

(UniDis)

thesquare-rootof the dimensionality. Therefore, a greater
level of randomization (and hence information loss) may be
sustained when the uniform distribution is used. We also
emphasize that unlike the case of the gaussian distribution,
the above intuition on the choice of the perturbing distribu-
tion is only a lower bound. This is because of the use of
the inequality between the geometric and arithmetic mean.
This inequality can be extremely loose in practice, when the
values of|δi|/ai are very different from one another over
the different dimensions. Therefore, even the lower bound
on the standard deviation of the perturbing distribution for
the uniformly distributed case is significantly higher than
the required standard deviation for the gaussian distribution.
We summarize as follows:

Conclusion 3.7 In the high dimensional case, gaussian
perturbations provide higher randomization than the uni-
form perturbation.

4 Experimental Analysis

We used a number of synthetic data sets for experimental
analysis. In each case, we normalized the variance of each
dimension to one unit by scaling. This is helpful in test-
ing the relative effectiveness on different data sets. In each
synthetic data set, a 100-dimensional base data set was gen-
erated andN = 10000 data points were generated. We will
test the effects of varying dimensionality by picking projec-
tions of different dimensionality from the base data.

4.1 Data Sets

. The aim of generating different data sets was to expose
the effects of using different kinds of data distributions on

the testing process. The data sets generated were as follows:

(1) We generated a uniformly distributed set of points
in the unit cube. The variance along each dimension was
normalized to one unit by scaling. We denote this data set
asUniDis.
(2) In order to test the effects of data skew, we generated
a clustered data set. The centroids ofp = 5 clusters were
chosen randomly in the unit cube. Each cluster containing
2000 points, and the radius along each dimension was
uniformly picked from the range[0, 0.1]. The clusters
were generated from a gaussian distribution with the
corresponding radii along each dimension. Once the data
set was generated, we normalized the variance along each
dimension to one unit by scaling. We refer to this data set
asEGauDis.
(3) In order to test the effect of varying density skew,
we generated a data set which was the exactly similar to
EGauDis in terms of cluster centroid and radii generation
along each of the dimensions. The only difference was that
the number of points in theith cluster was proportional to
1/iθ, whereθ was the Zipf parameter. Note that the use
of θ = 0 createsEGauDis. We denote this data set by
V GauDis(θ). As in the previous cases, we normalized
each dimension after data set generation. The default value
of θ used was 1.
(4) In order to test the effect of outliers, we again generated
a data set which was the exactly similar to the data set
EGauDis in terms of number and position of cluster
centroids, and the radii along each of the dimensions for the
different clusters. The only difference was that a fraction
f of the data points were picked as outliers, whereas the
remaining data points were evenly distributed among the
different clusters. We denote this data set byOGauDis(f).
Note that a choice off = 0 yields the data setEGauDis.
Unless otherwise mentioned, the value off used was0.1.

In combination with the use of the above data sets for
the base distribution, we tested both the uniform and gaus-
sian perturbing distributions. We assume that all dimen-
sions have the same perturbing variance. This follows from
the similarity assumption, since the variance of all base data
sets were normalized to one unit along each dimension.
Therefore, the standard deviation of the perturbing distribu-
tion exhibited the same proportional behavior with different
data sets.

4.2 Measures

In order to test the privacy effectiveness of a given
perturbation, we utilized two measures:

(1) Average Randomization Level: For each data
point X, we calculated the number of data points (includ-



ing itself) which had a maximum likelihood fit which was
at leastequal to it. This is the randomization levelkr(X).
Note that the lowest possible value ofkr(X) is 1. Then,
the average randomization levelAR(D) of the data setD
is defined as follows:

AR(D) =
∑

X∈D

kr(X)/|D| (18)

This measure computes the average anonymity level of the
records in the data.
(2) Worst Case Randomization Level:We calculated the
worstq-quantile of the arraykr(X), and defined this as the
worst case randomizationWR(D). This measure calcu-
lates the maximum number of records which fit a perturbed
record at least as well as the true record among the fraction
q of the data which has the smallest randomization level. In
many applications, the worst-case behavior may be a more
important measure because the ability to discover even a
small fraction of the data may be undesirable.

The average and worst case randomization provide dif-
ferent kinds of insights into the behavior of different data
and perturbing distributions. In particular, cases in which
worst case randomization level is significantly lower than
the average case are interesting from the perspective of ex-
posing the difficulty of preserving privacy in certain kinds
of data sets.

4.3 Experimental Results

Our evaluation will examine the behavior of the random-
ization level with respect to the effect of using different data
distributions, increasing dimensionality, density and outlier
behavior of the data set. This particular design was chosen
in order to verify the different intuitions about natural char-
acteristics of base data sets and perturbing distributions. We
first tested the effect of data dimensionality on the perturba-
tion effectiveness. In Figure 1, we have illustrated the effect
of increasing dimensionality on theUniDis data set. These
results were obtained by applying the technique to projec-
tions of the data of different dimensionality. TheX-axis on
each chart illustrates the data dimensionality, whereas the
Y -axis illustrates both the average and worst case random-
ization levelsAR(D) andWR(D) respectively for differ-
ent perturbing distributions. Since the randomization level
varied widely for different data sets, distributions, and di-
mensionalities, we made it a point to use a logarithmic scale
on theY -axis. As pointed out earlier, the base data sets were
normalized so that the variance along each dimension was
σo = 1. The corresponding perturbation variance was set
of 8 ·σo in each case. Since the variance of the original data
set was always the same, this set of charts helps us compare
the relative behavior of different data sets and perturbing
distributions with varying dimensionality.

One immediate observation from each of the (logarith-
mically scaled) charts in Figures 1 was that both the av-
erage and worst case randomization levels reduced rapidly
with increasing dimensionality for different data sets. For
example, in Figure 1, the average randomization (with
uniform perturbations) for the 1-dimensional data set was
9646.1, whereas the average randomization level for the
100-dimensional case was151.7. This means that for the 1-
dimensional case,96.46% of the original 10,000 points fit a
given data point as well as the true point. On the other hand,
this number reduced to only1.51% in the 100-dimensional
case. Even more interesting behavior was observed by ex-
amining the lowest1% quantile of the data. This corre-
sponds toWR(D). In this case, the randomization level
was2907 for the 1-dimensional case.However, for any in-
stantiation of the data set beyond 64 dimensions , the ran-
domization level was only 1 for the entire lower1% quantile
of the data, when uniform perturbations were used. We note
that a randomization level of 1 denotes no privacy, since the
data point itself contributes to a randomization level of 1.
This behavior was specific to the uniform perturbing distri-
bution, and happened in spite of a high perturbation level of
8 · σo for each dimension.

As evident from Figure 1, the behavior of the gaussian
perturbing distribution was much more robust with increas-
ing dimensionality, even though the uniform perturbation
turned out to be superior for the lower dimensional cases.
For example, for the 1-dimensional case in Figure 1, the av-
erage randomization level for the gaussian perturbing dis-
tribution 4552.2 which was less than half the randomiza-
tion level of the uniform distribution. However, when the
dimensionality increases to 100, the average randomization
level was 1824.4, which was more than an order of magni-
tude higher than the randomization level151.7 for the uni-
form perturbations. An even more interesting case was the
behavior of the worst1%-quantile of the data. While the
uniform perturbation had no privacy of the worst1% quan-
tile for dimensionalities beyond 64, the gaussian perturba-
tion had a randomization level of between 5 and 10 for di-
mensionalities higher then 64. Thus, the results show that
while the curse of dimensionality results in a reduction of
privacy with increasing dimensionality, the effect was more
pronounced in the uniformly distributed case. Since a bet-
ter choice of perturbing distribution seems to moderate the
effects of the dimensionality curse, this underlines the im-
portance of judiciously choosing the perturbing distribution
in the randomization method.

In Figure 2, in which we have illustrated the random-
ization level of the data setV GauDis(θ) with increasing
level of skewθ. In this case, we used a perturbation level
of 8 · σo, and a dimensionality of 75. A rather curious pat-
tern emerges when we closely examine this Figure. It is
clear that the average randomization levels increased with



skew, whereas the lower1%-quantile of randomization lev-
els worsened with increasing skew. For example, when
gaussian perturbations were used, the worst-case random-
ization level reduced from 24 to 13 with increasing level
of skew. However, the average case randomization level
increased from2353.0 to 2773.9. The results show that
the average randomization levels for the skewed data set
V GauDis(1) were greater than those ofEGauDis, but
randomization level of the lower1%-quantile was lower
for the skewed data set.The explanation for this curious
anomaly may be found in the fact that the randomization
level of a data point depends upon itslocal density. In the
case of the skewed distribution, there were always a few
points with very low local density (particularly the ones
belonging to the cluster with fewest points). These points
had low randomization level, and therefore contributed to
poor worst-case behavior. On the other hand, the majority
of points belonged to high density clusters containing the
most points. Therefore, the average randomization level of
the skewed data set was higher.

We tested the randomization level of the data set
(OGauDis(f)) with increasing fraction of outliersf . We
note that whenf = 0, this corresponds to the data set
EGauDis, and whenf = 1, then this corresponds to the
data setUniDis. The results are illustrated in Figure 3 for
a dimensionality of75, and a perturbation level of8 · σo.
TheX-axis illustrates the outlier fractionf . It is interest-
ing to see that while the average case randomization level
monotonically reduces with increasing outlier fraction, the
worst-case behavior first reduces and then increases. This
behavior is a little counter-intuitive and needs some expla-
nation. The worst-case behavior is defined by the lowest1%
quantile. Therefore, only a small fraction of the data points
need to be an outliers in order for the worst-case behavior
to be defined by these points. This corresponds to the sharp
drop off in randomization level betweenf = 0 andf = 0.2.
An increase in outlier level beyond this point only increases
the local density of the entire data space (except the clus-
tered space) by redistributing the points from the clustersto
the entire space. Since the variance along each dimension
in the original data is always normalized to one unit, a re-
distribution from clusters to the outlier space contracts the
range along each dimension in the original data (by increas-
ing the corresponding scaling factor of the standard devi-
ation along each dimension). In turn, this reduces the av-
erage intra-outlier distance. Since the worst case behavior
is not defined by the clustered space, the worst-case behav-
ior improves slightly with increase in outlier factorf . We
note that the results for the data setOGauDis(0.2) show
the greatest level of difference between worst-case and av-
erage case behavior. In fact the absolute worst-case ran-
domization level is typically even lower than the uniformly
distributed data set (corresponding tof = 1). Furthermore,
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we note that this kind of data set (which has a mixture of
clusters and outliers) is also the most likely in real appli-
cations. Thus, these results show that a wide variation in
density distribution across the different points can have a
powerful effect on the randomization level of some of the
data points. This is especially the case since the randomiza-
tion is done with a global perturbation level irrespective of
the underlying data density. In such cases, one is caught be-
tween the two extremes of losing too much information in
the dense regions (by a larger perturbation level) or that of
losing privacy in the sparse regions (by choosing a smaller
perturbation level).

More insight can be obtained by examining the behavior
of the maximum dimensionality which retains afixed ran-
domization level for different perturbing distributions.In
Figure 4, we have illustrated the maximum dimensionality
of the dataUniDis that a given level of perturbation could
support an average randomization level at (at least) 3300. In
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this case, we have illustrated the perturbation level on theX-
axis, as a multiple of the standard deviation of the original
dataUniDis. TheY -axis illustrates the maximum dimen-
sionality for which this perturbation level will support an
average randomization level of at least 3300. It is clear that
it is desirable to be able to support as high a dimensionality
of the data as possible. It is interesting to see that for data
sets of lower dimensionality, a lower level of perturbation
is required with the use of uniform perturbations. However,
with increasing dimensionality, the required increase in per-
turbation with dimensionality is much lower (sublinear) for
the gaussian case. This is in agreement with our other an-
alytical and empirical results. Thus, our results show the
considerable sensitivity of the randomization technique to
dimensionality as well as data and perturbing distributions.
In the next section, we will discuss the implications of the
inability to precisely control the privacy level with the use
of the randomization technique.

5 Discussion and Future Directions

In this paper, we provide a first comprehensive treatment
of the randomization approach in the presence of public in-
formation. This also provides a framework for analysis of
other future members of this privacy preserving methods.
We use this framework to illustrate a number of insights of
the randomization method. We show the degrading effect of
the dimensionality curse, and quantify the required pertur-
bation level as a function of the dimensionality. We show
that a careless choice of the perturbing distribution can de-
grade the privacy behavior in subtle ways because of the
presence of public information. Finally, we show that many
natural properties of real data sets such as clustering or out-
liers can significantly impact the effectiveness of the ran-

domization approach. In summary, our results expose the
high level of vulnerability of the randomization method to a
variety of properties of the data sets and perturbing distribu-
tions. This shows that privacy is an extremely elusive goal
for the randomization method, when public information is
injected into the analysis. In future research we will pro-
pose randomization methods which are carefully designed
in order to account for the effects of public information.
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