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Abstract tion. In randomization [1, 2], we add a perturbing distri-
bution to the original data. Even though individual record
A key method for privacy preserving data mining is values are distorted, it is possible to accurately recanstr
that of randomization. Unliké&-anonymity, this technique aggregate distributions and design data mining algorithms
does not include public information in the underlying as- which work with these distributions. One nice charactarist
sumptions. In this paper, we will provide a first compre- of the k-anonymity model is that it is specifically designed
hensive analysis of the randomization method in the pres-to guarantee privacy in the presence of public information.
ence of public information. We will define a quantifica- This is not true of randomization, since the added noise is
tion of the randomization method which we refer tokas  drawn from a fixed distribution. This paper is designed to
randomization of the data. The inclusion of public informa- introduce the analytical effects of public informationant
tion in the theoretical analysis of the randomization metho the analysis of randomization. Earlier work on randomiza-
results in a number of interesting and insightful conclu- tion [8, 9] uses spectral analysis to approximately recon-
sions. These conclusions expose some vulnerabilities oftruct attributezalueswithout the use of public information.
the randomization method. We show that the randomiza-However, attribute value approximation is a subtly differe
tion method is unable to effectively achieve privacy in the goal frompersonalidentification with the use of linkage to
high dimensional case. We theoretically quantify the degre public databases. To our knowledge, this is the first com-
of randomization required to guarantee privacy as a func- prehensive treatment of the randomization method in the
tion of the underlying data dimensionality. Furthermore, w presence of public information. We introduce the concept
show that the randomization method is susceptible to manyof k-randomization as a tool for measurement, and make
natural properties of real data sets such as clusters or out- the following contributions:
liers. Finally, we show that the use of public information (1) This paper provides a first public-information sensitive
makes the choice of perturbing distribution very critical i methodology to analyze the randomization approach.
a number of subtle ways. Our analysis shows that the inclu-(2) As in the case of-anonymity [3], the effectiveness of
sion of public information in the analysis makes the goal of randomization degrades rapidly with increasing dimension
privacy preservation more elusive than previously thought ality. We quantify the required perturbation to achieve a
for the randomization method. given privacy level as a function of dimensionality.
(3) The use of public information makes the choice of per-
turbing distribution more critical than previously though
1 Introduction We analyze two widely used perturbing distributions (gaus-
sian and uniform) and show that gaussian perturbations
have overwhelming advantages in high dimensional cases.

In recent years, advances in technology have lead to in- D T .
N - (4) The use of public information in the analysis exposes the
creased storage of data about individuals by corporations

and government entities. This has increased concerns aboustusceptibility of the randomization method to many natural
: : roperti f real h I rs or outliers.
the possibility of compromising personal information, and properties of real data sets such as clusters or outliers

: : 5) The paper demonstrates that the inclusion of public in-
has spawned the research area of privacy-preserving dat ; o :
- ormation makes the randomization method vulnerable in
mining [1, 2, 5, 7, 10, 11, 12].

Two important orivacy models are thoseleanonymit unexpected ways. Thus, the goal of privacy preservation
portant p y . ymity may be more elusive than previously thought for the ran-
and randomization. lh-anonymity [11], we reduce the rep-

resentational accuracy of arecord, so that it cannot bedink domization method.
to less thark public records containing identifier informa- This paper is organized as follows. In the next section,



we discuss how to quantify the risk of disclosure in the pres- known perturbing distributiongy- (y) generate these poten-
ence of public information. In section 3, we analyze the ef- tial perturbations over thé different dimensions? We note
fects of dimensionality and data distribution. In sectign 4 that the log-likelihood that the modé}. (y) fits the poten-
we present the experimental results. Section 5 discusses thtial perturbationy; (Z, X) is given by lod fy, (¢:(Z, X))) =

conclusions and discussions. log( fy, (z; — z;)). We define the correspondipgtential fit
of the dimensions iQ)(Z, X) to the distributions denoted
2  Effects of Public Information by fv,(y)... fv,(y) as the sum of the log-likelihood fits

over the different dimensions.

In this section, we will introduce the concepts of like- pefinition 2.2 The potential fit F(Z, X) of the

lihood fit and k-randomization which quantify the ability perturbed data Z to the record X is given by
to re-identify the data in the presence of public informa- Z?:l log(fy, (¢:(Z, X))).

tion. This creates an analogous randomization framework

to that of k-anonymity. We assume that the databdse The higher the value of the log-likelihood fit, the greates th
containsN records andi! dimensions. The random per- Probability that the public database recokdcorresponds
turbations for the different dimensions have distribusion to the perturbed dat&. For a given public databage,, an
denoted byfy, () ... fy,(y). The corresponding standard adversary can try to match the recordiy which has the
deviations of these distributions are denoteddy . . 7. highest level of fit to the perturbed recoi We observe
Without loss of genera“ty, we may assume that each of that the |Og likelihood fit is an indirect representationhﬂt
the perturbing distributions has zero mean. Let us con- Bayes a-posteriori probability that the perturbed datangc
sider a recordX = (z1...z4) to which the perturbation fits a particular record:

Y = (y1...yq) is added. Then the perturbed data is de-
noted byZ = (Zl .. Zd) = (Il +Y1,...Tq + yd)- Now

let us consider an adversary who has access to the publicl
available databasP,. Since the perturbing distribution is
publicly known, the adversary can calculate fhatential
perturbation of the record with respect to each record in

Observation 2.1 Consider a databas®,, which is known
to contain the true representation of the perturbed recsrd
Xwith equal a-priori probability. Then the posterior proba-
bility B(Z, X, D,,) of a particular recordX € D, to corre-
spond toZ is given by:

the public databas®,. This can be used to calculate the eF(Z,X)
probability that these set @kdimensional perturbations fit B(Z,X,Dp) = S TN (1)
the set of distributions denoted by, (v) ... fy,(y). The VEDy

natural way of calculating the fit of a set of models to a set The above observation is easy to verify, since the pertur-
of observations is théog-likelihoodfit. In the event that  pations over different dimensions are independent and the
one of the records in the public database has an unusuallygjye ofe” (2. X) is simply equal to the product of the cor-
hlgh degree of fit, this allows the adversary the abl'lty to responding probabmty densities. By app|y|ng the Bayes
guess whether the current record truly corresponds to anyformula in conjunction with equal a-priori probability, we
particular record in the public database. get the desired result. Thus, the log likelihood is an intire
Let us consider the public recotd = (z1...z4). We  representation of the Bayes probability, and the use of this

would like to calculate the likelihood that the perturbed particular representation is chosen for the sake of nueric
recordZ = (21 ...z4) corresponds to this publicly avail-  and algebraic convenience.

able record. In order to do so, the adversary can compute the |n many cases, the log likelihood fit can provide con-
potential fitof the perturbed record to the public database sjderable insights to an adversary in including or exclgdin
recordX. Next, we define th@otential perturbatiorof @ particular database records. For example, the log liketiho

given record” to the public database recoid fit may be a significantly better fit to one record in the pub-

Definition 2.1 The potential perturbationQ(Z, X) of a lic database compared to any other record. In such a case,

perturbed recordZ = (z; ... z4) with respect to the public the corresponding Bayes probabill(Z, ).(’ Dp_)_may ap-

database recordl — (w; .. .wg) is denoted by)(Z, X) — proach 1, and the__sald record can be |de_nt|f_|ed to a high

o _ degree of probability. Therefore, anonymity is lost. An-

'(I'qﬁéihxc)om %lrgﬁtx o)t)g(_ZZX_)ﬁ c;egi)lte_dxt; ' (;’1 I}idl other extreme case is one in which the perturbing distribu-
_ P ’ Ml N tion has a finite range (such as the uniform distributiongl, an

the value offy, (¢;(Z, X)) to be zero. In such a case, the

The above definition simply states that in order for the pub- corresponding log likelihood fit is-oo, and it is possible to

lic database record to correspond to the perturbed record exclude the record as a fit withZ.

Z, the perturbation for théh dimension would need to be In general, we would like the perturbation to be suffi-

q:(Z,X) = z; —x;. What s the likelihood that the publicly  cient, so that at least some other spurious records in tiae dat

Zi — Tj.



set have a higher fit to the correct public database recordDefinition 2.4 The average randomization level of the
than the true record. Larger perturbations reduce the log-databasé is defined as the average valuelof(X') over

likelihood fit of the true record( € D corresponding t¢’,
and increase the probability that another spurious record i
D may have a higher log-likelihood fit thakl by chance.
This is desirable from the point of view of privacy preser-
vation. When there are at ledstecords inD which have
higher (or equal) log likelihood fit thax’, then the record
X is said to bek-randomized. In such a case, no public
database can be used to distinguishfrom the & other
records withinD which are a better fit to the randomized
representation o. Now, we will define the concept of
k-randomization formally.

Definition 2.3 A (randomized) record € D with original
representationX is said to bek-randomized when there are
at leastk records{ X, ... X} € D for which the following
is true:

F(Z,X) < F(Z,X,) 2)
This means that the randomized recdfccannot be used
to distinguish its true representatidh from the k£ records
Xi1... Xy in D. By performing k-randomization of ev-
ery record in the databag®, it is possible to achieve an
equivalent level ofc-anonymity for the randomization ap-

all points inD.

Since the calculated randomization level X') may vary
with data pointX, we also define a worst-case quantifica-
tion. In this context, we define the randomization level at
guantileq.

Definition 2.5 The randomization level of databage at
guantileq is computed as the lowest quantijef the ran-
domization level array:r(-).

The average and worst case behaviors provide different
kinds of insights. In the next section, we will use these
guantifications to analyze the effects of different kinds of
data sets, dimensionality, and perturbing distributions.

3 Effects of High Dimensionality

In this section, we will analyze the effect of different
perturbing distributions on the effectiveness of randa@miz
tion. We will also analyze the effects of dimensionality on
the effectiveness of randomization. The two most common
distributions used for perturbation are the uniform and the
gaussian distribution [1]. In this section, we will analyze

proach. However, since the randomization approach doesthe effects of both

not use a trusted server and can be performetht col-
lection time(without knowledge of other records), the ex-

act level of randomization may not be known or precisely

controlled a-priori. This is different from thie-anonymity

model which performs the privacy transformation in a con-

trolled way so as to explicitigngineerk-anonymity. Here,
our aim in defining the randomization level of a record is to
use it as amnalytical toolfor judging the effectiveness of a
given level of perturbation. The only a-priori control para

eter is the perturbation standard deviation, and the random

ization level is computed a-posteriori. Thus, ttedculated
randomization level of a poinX is denoted byer(X) and

is equal to the number of randomized points in the databasediven by F(Z, X)

which fit the randomized version of at least as well as
(the randomized representation )itself. We make the
following observation about the expected valué:ofX):

Observation 2.2 Let X = (z;...x4) be ad-dimensional
point from the databas®. LetZ = (z;...z4) represent
the randomization oX. Then, the expected randomization
level E[kr(X)] is as follows:

Elkr(X)| = Y P(F(2,X') > F(Z,X))
X'eD

®3)

As in the case ok-anonymity, this value is at least 1 to
account for the case whek’ = X. Next, we generalize
the point specific randomization level to the entire databas

3.1 Gaussian Perturbing Distribution

The gaussian perturbation with standard deviatipon
theith dimension is defined as follows:

2

_ Y
= 71 e 2‘0?
V2 7o

Let us consider the record (x1...24) which is
perturbed to the randomized record denoted by =
(21...24). Then, the log likelihood fitF(Z, X) is

S 10g( fy, (4:(Z, X))

Zle log(fy, (z; —x;)). By substituting the value ofy, (y)
according to Equation 4, we get:

fr () 4

d d (Z _ .7}')2
F(2.X) = ~(d/2log(2m) =Y loglo:) = Zo—
i=1 '

= i=1

®)
Let us now consider another recakd = (2} ...z),) € D
which is in the neighborhood of. We would like to cal-
culate the probability that the likelihood t#(Z, X') is at
least equal to that oF (Z, X). As evident from Observation
2.2, this probabilityP (F(Z, X') > F(Z, X)) plays a key
role in defining the expected randomization lef#ékr (X)).
Therefore, our future analysis will quantify the value of
P(F(Z,X") > F(Z,X)). We will show the following re-
sult about this probability:



Lemma3.lletX = (z;...2q) and X’ = (z}...2))
be the twad-dimensional points from the databe@e such
that A = (§1...04) = X — X'. LetZ = (21 ... 24) rep-
resents the randomization of and o2 be the variance of
the rg};aussmn perturbation along thith dimension. Then,
we have:

P(F(Z,X") > F(Z,X)) = (Z&Q /(202) <Z —5; i) o2

6
Herey; is the random variable representing the gaussian
perturbation along théth dimension.

Proof: By substituting the values ofF(Z, X) and
F(Z,X') from Equation 5, and canceling the common
terms, we get:

P(F(z,X") > F(Z,X)) =
=P (X, (2 — @)?/o? = Sy —(zi — @) /0?)
=P (S0 (s — i+ 6202 < S0 (20— @) /0?)
The last relationship is obtained by replaciig= X — A,

and reversing the sign of the inequality by negating both

sides. Now, we note that; — x; is simply the value of
the random perturbation; which is derived from a gaus-
sian distribution. Therefore, let us replage— x; by y; for
algebraic convenience. Therefore, we have:

Zyl /o; )
N
=P (L, 02/2-0%) < =L, 6 yi/o?)

The last relationship is obtained by simple algebraic expan
sion of (y; + 4;)? and subsequent simplification. [ ]

d
P(F(Z,X') > F(Z,X)) = P <Z yi +6:)
i=1

Sincey; is a gaussian with varianc»ﬁ about a mean of
zero, we haveZ[y;] = 0 andE[y?] = o?. By substituting
this in Equation 9, we get the desired result |
Theorem3.1Let X = (z1...zq) and X' = (2} ...2})
be twod-dimensional points from the databaBe such that
A= (§...04) = X — X'. LetZ represent the random-
ization of X ando? be the variance of the gaussian pertur-
bation along theth dimension. Then, we have:

d
P(F(2,X") > F(Z,X)) <4/ 67 /0?)

(10)
=1
Proof: Asin Lemma 3.2, let us defing = — > y; - 6;/02.
From Lemma 3.1, we get:
P(F(Z,X") > F(Z,X)) (Zéz /(202
(11)

P (V2 > (N4, 62/(2- ))2) (squaring both sides
and

recognizing thad?/(2 - o2) is always positive)
< E[V2)/(3L, 62/(2- 02))? (Chebychev Inequality)

By substituting the expression féf[V 2] from Lemma 3.2,

we get the desired result. [ ]

We note that the variance of the perturbing distribution
along each dimension is typically chosen proportional éo th
corresponding variance of the original data. This is a natu-
ral choice in order to provide a similar level of perturbatio
over the different dimensions.

While the above lemma provides an algebraic expression

for this bound, a more intuitive interpretation with resipiec
dimensionality and distribution needs to be constructad. |
order to do so, we will make use of the well known Cheby-
chev inequality. First, we will prove a simple lemma which
we will need in a later section.

Lemma 3.2 Lety; be the gaussian perturbation along the
ith dimension with variance?. LetV = — % y,-6,/02.
Then, we have:

d
1= "06}/0} (8)
=1

Proof: We note thay, . ..y, are independent perturbations
along thed dimensions. Therefore, by expanding the ex-

pression forl’2, and using independence to simplify expec-
tation of products of random variables, we get:

V]—Z&QE[% /o +2Z Zs 8;-Ely;)-

1=1 j=i+1

Ely;)/(o7-07)
9)

Assumption 3.1 Proportionality Assumption: If the
variance of the original data along thi¢h dimension is de-
noted byos?, then the perturbing variance; is chosen such
thatCy - 0; < 0 < C5 - 0; for some constantS; andCs.

The proportionality assumption automatically helps us re-
word the results of Theorem 3.1 as follows:

Theorem3.2Let X = (z1...zq) and X' = (2} ...2})
be twod-dimensional points from the databaBe such that

=(01...0q) =X — X'. LetZ = (z ... z4) represents
the randomization ok . Leto? be the variance of the gaus-
sian perturbation along théh dimension, ando?)? be the
variance of the original data along dimensienThen, un-
der the proportionality assumption, for some constapt
we have:

d
P(F(Z,X") 2 F(2,X)) < C3/(Y_ 6/ (0

i=1

%) (12)



We note that denominator of the right hand side of the rela- we have:
tionship of Theorem 3.2 contains the teJRf_, 62/(c?)2). y
This is simply the distance between and X', when the , B 5 o
original data is normalized by the variance along each di- P(F(2,X7) 2 F(Z, X)) =1 - &(( Zéi /97)/2)
mension. Therefore, it is intuitively clear that a data poin =t (13)
X’ which is spatially close toX has a higher chance of

satisfying the requiremef(Z, X') > 7(Z, X) which in- sponding expected randomization level of the data p&int

creasgs tgg randomilgatiohn level &f. H?wevgr,I \INithl'in_b is obtained by summing(F(Z, X') > F(Z, X)) over all
creasing dimensionality, the concept of spatial localigy points X’ # X in the database.

comes more problematic. According to [6], the sparsity
of high dimensional data ensures that the distance to otheM/e note that the cumulative normal distributi®-) is ap-
points in the datd . | 62/(0?)?) grows withd* in high ~ proximately equal to 1 for an argument value greater than 3.
dimensional space, whet is the implicit dimensionality = Therefore, the expressioﬁle 82 /o2 needs to be at most
of the data. Therefore, evenX’ is chosen to be the near- 36 in order for the probability?(F(Z, X') > F(Z, X)) to
est neighbor ofX, the value ofP(F(Z, X') > F(Z,X)) not be (nearly) zero. Consider the case of a uniformly dis-
tends to zero with increasing value &fFrom Observation  tributed data set in which we pick; = C - ¢°. In such a
2.2, the expected randomization lev&kr(X)] is critically case, we can show [6] that the distance vazg?:l 62 )a?
dependent upon this probability, and therefore, the random grows asd/OQ_ This means that’ must grow With\/g
ization level of X also reduces with increasing dimension- in order for the probability?(F(Z, X') > F(Z, X)) to be
ality. We summarize this result as follows: significantly larger than zero. Since Observation 2.2 ties t
probability P(F(Z,X') > F(Z, X)) to the expected ran-
domization levelE (kr(X)], this indicates that the value of
Conclusion 3.1 The expected randomization level reduces ¢ should grow withv/d for the randomization level to be
with increasing dimensionality for a fixed level of perturba  constant with increasing dimensionality. While the restilt o
tion. [6] is true for the case of uniform distribution of the origin
data, it provides the intuition that the perturbing staddar
deviation along each dimension should grow as the square
root of theimplicit dimensionalityof the data. We summa-
a{ize this result as follows:

Here ®(-) is the cumulative normal distribution. The corre-

How strong is this revealing effect of high dimension-
ality? We note that the Chebychev inequality is extremely
weak in practice. Therefore, the above results represent

fairly weak bound. In practice, it is possible to get much Conclusion 3.2 Under the proportionality assumption, the

tighter bounds with the use of a few approximations on perturbing gaussian distribution along each dimension
Lemma 3.1. We note that the right hand side of Lemma 3.1should have a standard deviation which grows with the
containsV’ = — "¢ | ;- ;/02. Since eacly; is indepen-  square root of the implicit dimensionality of the underly-
dent, the variance df is equal to the sum of the individual ing data in order to retain the same level of randomization.
variances. This works out te*(V) = Y7, 62/02. We

further note that’[V'] = 0. Now, we make the approxima-

tion thatV” is normally distributed. This may be fairly close . . . .
to the truth for large values af, since each component of in the locality of X) are likely to have dominant values for

V (which is—y; - §; /%) is a unit normal distribution scaled P(F(Z,X") = 7(Z, X)) inthe right hand side of Observa-
by 6; /0. tion 2.2. The valu_e of egch of tgese terms depend inversely
_ _ upon the normalized distance;_, 62 /(c?)? betweenX
The right h;:xnd side of Lemma 3.1 candbe expressedang X', Thus, for data sets with the same global variance,
asP(V > 370, 07/(2-07)) = 1 - @((325_,97/(2- the expected randomization leve[kr(X)] is likely to be
7))/o(V)). Here®(:) is the cumulative normal distribu-  higher when non-empty localities of the data are dense and
tion. Sinceo(V) = 4 /Zd 62/02, we can summarize as highly clustered. This provides the following result:

=1
follows:

In practice, only a small number of data poits(which lie

Conclusion 3.3 The presence of clusters is helpful in in-
creasing the randomization level for data sets with similar

oo lobal variance.
Approximation 3.1 Let X = (z;...24) and X' = g varl

(«} ...2;) be twod-dimensional points from the database This is a nice property of the randomization method, since
D,suchthatA = (01...64) = X—X'. LetZ = (z1... 24) most real data sets exhibit clustered behavior. We further
represents the randomization &f. Leto? be the variance  note that while Approximation 3.1 provides an understand-
of the gaussian perturbation along thth dimension. Then, ing of the randomization level of each data point, it may



often be more desirable to examine the worst-case ran- = Zle log(fy (2 —x; + 6;)) = Zle log( fy (yi + 0:))
domization behavior of the entire data set. As discussed
earlier, thelocal magnitudes of the normalized distances
Zle(éi/a,?)Q have a strong inverse relationship with the
expected randomization levél[kr(X)]. Therefore, for
data sets with the same global variance, a variation in the
local density distribution can affect the worst-case rando
ization more sharply.

Here y; is the uniformly distributed perturbation in the
range[0,a;]. We note that each of thé terms on the
right hand side is either Idg/a;) or —oco depending upon
whether or no(y; + ¢;) lies in the rangé0, a;]. Therefore
F(Z,X') canneverbe larger tharF(Z, X). The value of
F(Z,X') can at most be equal t6(Z, X), if and only if
for each and every dimensiony; + J; lies in the range
Conclusion 3.4 A data set with varying density distribution [0, 4,]. Sincey; is uniformly distributed in the rangie, a;],

is likely to have a significantly lower worst-case randomiza it js easy to verify that the probability dfy; + d;) lying in
tion level than the average randomization level. the rangqo, ai] is (1 — |67,|/a7,) By using the independence

The presence of outliers is the extreme case, since the derof the different values of;, the result follows. n
sity within the locality of an outlier is significantly lower A simple corollary of the above result is as follows;

than the-average case density. _ Corollary 3.1 LetX = (z1...zq) and X’ = (2} ...2})
Conclusion 3.5 The presence of outliers may reduce the pe twod-dimensional points from the randomized database
worst-case randomization level without significantly effe D, suchthatA = (6;...84) = X —X'andZ = (2 ... zq)

ing the average-case randomization behavior of the data. represents the randomization &f. Let [0, a;] be the range

These results show that the randomization approach is susf the uniform perturbation along thigh dimension. Then,
ceptible to the presence of the density variations and out-We have:

liers. The intuition for this is that unlike methods suchkas d
anonymity, the current methods for randomization of indi- - p(r(z Xx') > F(Z, X)) < (1_Z(|§i|/(d'ai)))d (16)
vidual data points are applied without assumption of knowl- =1

edge about the rest of the data. This is an issue which needs

to be addressed in future research on randomization.
Proof: This corollary simply follows from Theorem 3.3 and

3.2 Uniform Perturbing Distribution the fact that the geometric mean of a set of non-negative
values is at most equal to the arithmetic mean. [ |

We assume that the perturbation alongdhedimension  As in the previous case, let us examine what happens in a
is uniformly distributed with rangé0, a;], and the corre-  uniformly distributed data set, when the rangéds chosen
sponding standard deviation, is equal toa;/v/12. For to beC' - ¢¢ for some constant’ using the proportionality
simplicity, we assume that the range of the perturbatiopn assumption. In this case, the results of [6] indicate that in
is larger than the range of the non-perturbed data along di-the high dimensional casgle |0;]/0¢ is expected to in-
mensioni. This is not really restrictive, since itis needed to crease a$3 - d for some constanB. Then, we can use the

preserve a minimum level of privacy along tith dimen- result of Corollary 3.1 to derive the following;
sion. Therefore, ifA = (4;...04) = X — X', we must
have|s;| < a;. P(F(2,X") > F(Z,X)) < (1-B/C)"  (17)

Theorem3.3LetX = (z1...24) and X’ = (2} ...2))

be twod-dimensional points from the randomized database

D, suchthatd = (4 ...0q) = X —X"andZ = (z1.. . za) above byl /e, wheree is the base of the natural logarithm.

represenf[s the randomlz_atlon A Lgt [0, f”] be .the range By choosingC' smaller thanB - d, it is possible for this

of the uniform perturbation along thigh dimension. Then, probability P(F(Z, X') > F(Z, X)) to fall off rapidly to

we have: zero. This would result in lower randomization levels. We
P(F(Z,X'")>F(Z,X)) = Widzl(l —16i|/ai)  (14) summarize as follows:

Note that when the value @' is chosen to beB - d, the
value of the above expression(is-1/d)<. This is bounded

Conclusion 3.6 Under the proportionality assumption, the
perturbing uniform distribution along each dimension

Proof: Since the distribution is uniform with density a;, = k
should have a range (or standard deviation) which grows

the value ofF (Z, X) is simplyd - log(1/a;). Now we note

that the value ofF(Z, X') is defined as follows: at Iea}stlinearly with the implicit dimensionality of the un-
. derlying data.
F(Z,X') = Z log(fy (z; — x})) = (15) Recall that the in the case of the gaussian distribution, the
i=1 required standard deviation grows proportionally onlyhwit
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the testing process. The data sets generated were as follows

(1) We generated a uniformly distributed set of points
in the unit cube. The variance along each dimension was
normalized to one unit by scaling. We denote this data set
asUniDis.

(2) In order to test the effects of data skew, we generated
a clustered data set. The centroidspof 5 clusters were
chosen randomly in the unit cube. Each cluster containing

w'k 2000 points, and the radius along each dimension was
. uniformly picked from the rangg€0,0.1]. The clusters
W were generated from a gaussian distribution with the
T e e corresponding radii along each dimension. Once the data
DIMENSIONALITY set was generated, we normalized the variance along each
dimension to one unit by scaling. We refer to this data set
asEGauDis.
(3) In order to test the effect of varying density skew,
we generated a data set which was the exactly similar to
EGauDis in terms of cluster centroid and radii generation
along each of the dimensions. The only difference was that
the square-rootof the dimensionality. Therefore, a greater the number of points in thé&h cluster was proportional to
level of randomization (and hence information loss) may be 1/i?, whered was the Zipf parameter. Note that the use
sustained when the uniform distribution is used. We also of # = 0 createsEGauDis. We denote this data set by
emphasize that unlike the case of the gaussian distriqution VGauDis(#). As in the previous cases, we normalized
the above intuition on the choice of the perturbing distribu each dimension after data set generation. The default value
tion is only a lower bound. This is because of the use of of § used was 1.
the inequality between the geometric and arithmetic mean.(4) In order to test the effect of outliers, we again generated
This inequality can be extremely loose in practice, when the a data set which was the exactly similar to the data set
values of|d;|/a; are very different from one another over EGauDis in terms of number and position of cluster
the different dimensions. Therefore, even the lower bound centroids, and the radii along each of the dimensions for the
on the standard deviation of the perturbing distribution fo different clusters. The only difference was that a fraction
the uniformly distributed case is significantly higher than f of the data points were picked as outliers, whereas the
the required standard deviation for the gaussian distdbut ~ remaining data points were evenly distributed among the
We summarize as follows: different clusters. We denote this data sethiauDis(f).
Note that a choice of = 0 yields the data setGauDis.
Unless otherwise mentioned, the valuefaised wa$).1.

In combination with the use of the above data sets for
the base distribution, we tested both the uniform and gaus-
sian perturbing distributions. We assume that all dimen-
sions have the same perturbing variance. This follows from
the similarity assumption, since the variance of all basa da

We used a number of synthetic data sets for experimentalse s \were normalized to one unit along each dimension.

analysis. In each case, we normalized the variance of eacherefore, the standard deviation of the perturbing distri

dimension to one unit by scaling. This is helpful in test- 4, exhibited the same proportional behavior with diffetre
ing the relative effectiveness on different data sets. tihea data sets

synthetic data set, a 100-dimensional base data set was gen-
erated andV = 10000 data points were generated. We will
test the effects of varying dimensionality by picking pmje
tions of different dimensionality from the base data.

Figure 1. Randomization Level with Increas-
ing Dimensionality, Perturbation level = 8-¢°
(UniDis)

Conclusion 3.7 In the high dimensional case, gaussian
perturbations provide higher randomization than the uni-
form perturbation.

4 Experimental Analysis

4.2 Measures

In order to test the privacy effectiveness of a given
4.1 Data Sets perturbation, we utilized two measures:
. The aim of generating different data sets was to expose(1) Average Randomization Level: For each data
the effects of using different kinds of data distributioms 0 point X, we calculated the number of data points (includ-



ing itself) which had a maximum likelihood fit which was One immediate observation from each of the (logarith-

at leastequal to it. This is the randomization leviet(X). mically scaled) charts in Figures 1 was that both the av-
Note that the lowest possible value bf(X) is 1. Then, erage and worst case randomization levels reduced rapidly
the average randomization levdiR (D) of the data seD with increasing dimensionality for different data sets.r Fo
is defined as follows: example, in Figure 1, the average randomization (with
uniform perturbations) for the 1-dimensional data set was
AR(D) = Y kr(X)/|D| (18)  9646.1, whereas the average randomization level for the
XeD 100-dimensional case was1.7. This means that for the 1-

This measure computes the average anonymity level of thed|men5|0nal casé6.46% of the original 10,000 points fit a

records in the data given data point as well as the true point. On the other hand,

(2) Worst Case Randomization Level:We calculated the this nugber reducgc: to OPM’L%h'n t_he 100-dLmenS|8n;1I
worstg-quantile of the arrayr(X), and defined this as the case. tven more intéresting behavior was observed by ex-

worst case randomizatioR (D). This measure calcu- amining the lowestl % qgantile of the data. 'Thi.s corre-
lates the maximum number of records which fit a perturbed sponds tOVR(D). In this case, the randomization level

record at least as well as the true record among the fractionvvaSZ907 for the 1-dimensional casélowever, for any in-

q of the data which has the smallest randomization level. In stantiation of the data set heyond 64 dimensions , the ran-

many applications, the worst-case behavior may be a mored?tr;:'ZZ‘“?"]V:I(:]V(;I Wr?i? c;rr:]ly 1:torr:)hetie2tlr\(levlorvﬂé% q;a\?\;'li N
important measure because the ability to discover even o' (he datawhen uniform perturbations were used. Ve note

smallfraction of the data may be undesirable, et andomiaton e f L denotes oy, snce e
The average and worst case randomization provide dif-Th. S havi " h i bing di y

ferent kinds of insights into the behavior of different data IS behavior was Specilic FOt € unriorm pertur ing Istri

and perturbing distributions. In particular, cases in Wwhic bution, and happened in spite of a high perturbation level of

worst case randomization level is significantly lower than 8-0 for.each d|men§|on. _ _
the average case are interesting from the perspective of ex- As evident from Figure 1, the behavior of the gaussian
posing the difficulty of preserving privacy in certain kinds perturbing distribution was much more robust with increas-

of data sets. ing dimensionality, even though the uniform perturbation
turned out to be superior for the lower dimensional cases.
4.3 Experimental Results For example, for the 1-dimensional case in Figure 1, the av-

erage randomization level for the gaussian perturbing dis-

Our evaluation will examine the behavior of the random- tribution 4552.2 which was less than half the randomiza-
ization level with respect to the effect of using differeatal ~ tion level of the uniform distribution. However, when the
distributions, increasing dimensionality, density andien  dimensionality increases to 100, the average randomizatio
behavior of the data set. This particular design was choserl€V€l was 1824.4, which was more than an order of magni-
in order to verify the different intuitions about naturagh ~ tude higher than the randomization levéll.7 for the uni-
acteristics of base data sets and perturbing distributiales ~ fOrm perturbations. An even more interesting case was the
first tested the effect of data dimensionality on the peurb  P€havior of the worst%-quantile of the data. While the
tion effectiveness. In Figure 1, we have illustrated theaff ~ uniform perturbation had no privacy of the woiist quan-
of increasing dimensionality on ttiéni Dis data set. These Ul for dimensionalities beyond 64, the gaussian perturba
results were obtained by applying the technique to projec-“on hgd a_rgndo_mlzatmn level of between 5 and 10 for di-
tions of the data of different dimensionality. TE&axis on me.nS|onaI|t|es hlghgr then_ 64. .Thus, the.results shgw that
each chart illustrates the data dimensionality, whereas th While the curse of dimensionality results in a reduction of
v-axis illustrates both the average and worst case randomPrivacy with increasing dimensionality, the effect was eor

ization levelsAR (D) andWR(D) respectively for differ- pronou_nced in the u_rliformly_disFributed case. Since a bet-
ent perturbing distributions. Since the randomizatiorelev ter choice of perturbing distribution seems to moderate the

varied widely for different data sets, distributions, arid d  €ffects of the dimensionality curse, this underlines the im
mensionalities, we made it a point to use a logarithmic scalePortance of judiciously choosing the perturbing distriont

on theY -axis. As pointed out earlier, the base data sets were! the randomization method.

normalized so that the variance along each dimension was In Figure 2, in which we have illustrated the random-
o° = 1. The corresponding perturbation variance was setization level of the data sét GauDis(6) with increasing
of 80 in each case. Since the variance of the original datalevel of skewd. In this case, we used a perturbation level
set was always the same, this set of charts helps us comparef 8 - ¢°, and a dimensionality of 75. A rather curious pat-
the relative behavior of different data sets and perturbing tern emerges when we closely examine this Figure. It is
distributions with varying dimensionality. clear that the average randomization levels increased with



skew, whereas the lowéf4-quantile of randomization lev-
els worsened with increasing skew. For example, when ]
gaussian perturbations were used, the worst-case random- 0
ization level reduced from 24 to 13 with increasing level R —

of skew. However, the average case randomization level v
increased fron2353.0 to 2773.9. The results show that

the average randomization levels for the skewed data set

VGauDis(1) were greater than those dfGauDis, but -
randomization level of the lowet%-quantile was lower e el
for the skewed data sefThe explanation for this curious
anomaly may be found in the fact that the randomization e e s
level of a data point depends upon lidgal density In the

case of the skewed distribution, there were always a few Figure 2. Randomization Level with Increas-
points with very low local density (particularly the ones ing Density Skew 6, Dimensionality = 75, Per-
belonging to the cluster with fewest points). These points  turbation Level = 8- ¢° (VGauDis(6))

had low randomization level, and therefore contributed to

poor worst-case behavior. On the other hand, the majority

of points belonged to high density clusters containing the
most points. Therefore, the average randomization level of

the skewed data set was higher.

We tested the randomization level of the data set x\’\\\

(OGauDis(f)) with increasing fraction of outlierg. We e e
note that whenf = 0, this corresponds to the data set
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EGauDis, and whenf = 1, then this corresponds to the

data seUniDis. The results are illustrated in Figure 3 for :
a dimensionality of75, and a perturbation level & - o°. .

The X-axis illustrates the outlier fractiofi. It is interest- '
ing to see that while the average case randomization level
monotonically reduces with increasing outlier fractidme t
worst-case behavior first reduces and then increases. This Figure 3. Randomization Level with Increas-

behavior is a little counter-intuitive and needs some expla  ing Outlier Fraction f, Dimensionality = 75,

nation. The worst-case behavior is defined by the low#st Perturbation Level =8-0° (OGauDis(f))

quantile. Therefore, only a small fraction of the data point

need to be an outliers in order for the worst-case behavior

to be defined by these points. This corresponds to the sharp

drop off in randomization level betwegn= 0 andf = 0.2. we note that this kind of data set (which has a mixture of
An increase in outlier level beyond this point only increase clusters and outliers) is also the most likely in real appli-
the local density of the entire data space (except the C|us_Cati0nS. Thus, these results show that a wide variation in
tered space) by redistributing the points from the clugters ~density distribution across the different points can have a
the entire space. Since the variance along each dimensioowerful effect on the randomization level of some of the
in the original data is always normalized to one unit, a re- data points. This is especially the case since the randemiza
distribution from clusters to the outlier space contrahts t  tion is done with a global perturbation level irrespective o
range along each dimension in the original data (by increas-the underlying data density. In such cases, one is caught be-
ing the corresponding scaling factor of the standard devi- tween the two extremes of losing too much information in
ation along each dimension). In turn, this reduces the av-the dense regions (by a larger perturbation level) or that of
erage intra-outlier distance. Since the worst case behavio 10sing privacy in the sparse regions (by choosing a smaller
is not defined by the clustered space, the worst-case behawPerturbation level).

ior improves slightly with increase in outlier factgr We More insight can be obtained by examining the behavior
note that the results for the data €€auDis(0.2) show of the maximum dimensionality which retaindigedran-

the greatest level of difference between worst-case and avdomization level for different perturbing distribution$n
erage case behavior. In fact the absolute worst-case ranFigure 4, we have illustrated the maximum dimensionality
domization level is typically even lower than the uniformly of the datal/niDis that a given level of perturbation could
distributed data set (correspondingfte= 1). Furthermore,  support an average randomization level at (at least) 3300. |
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e caussn PERTURBATION domization approach. In summary, our results expose the
high level of vulnerability of the randomization method to a
variety of properties of the data sets and perturbing tistri
tions. This shows that privacy is an extremely elusive goal
for the randomization method, when public information is
injected into the analysis. In future research we will pro-
pose randomization methods which are carefully designed
in order to account for the effects of public information.
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