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Abstract We explore the problem of portable and
flexible privacy preserving access rights that permit ac-
cess to a large collection of digital goods. Privacy-pre-
serving access control means that the service provider
can neither learn what access rights a customer has nor
link a request to access an item to a particular customer,
thus maintaining privacy of both customer activity and
customer access rights. Flexible access rights allow a cus-
tomer to choose a subset of items or groups of items from
the repository, obtain access to and be charged only for
the items selected. And portability of access rights means
that the rights themselves can be stored on small devices
of limited storage space and computational capabilities
such as smartcards or sensors, and therefore the rights
must be enforced using the limited resources available.
In this paper, we present and compare two schemes that
address the problem of such access rights. We show that
much can be achieved if one allows for even a negli-
gible amount of false positives — items that were not
requested by the customer, but inadvertently were in-
cluded in the customer access right representation due to
constrained space resources. But minimizing false posi-
tives is one of many other desiderata that include pro-
tection against sharing of falsepositives information by
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unscrupulous users, providing the users with transaction
untraceability and unlinkability, and forward compati-
bility of the scheme. Our first scheme does not place any
constraints on the amount of space available on the lim-
ited-capacity storage device, and searches for the best
representation that meets the requirements. The second
scheme, on the other hand, has (modest) requirements
on the storage space available, but guarantees a low rate
of false positives: with O(mc) storage space available on
the smartcard (where m is the number of items or groups
of items included in the subscription and c is a selectable

parameter), it achieves a rate of false positives of m~¢.

Keywords Compact representation -
Privacy-preserving access rights - Flexible access rights

1 Introduction

The focus of this work is on the specification of access
rights that permit privacy-preserving access to a large
collection of digital goods (e.g., articles, books, maga-
zines, multimedia objects, or any other type of digital
data items). With a large number of subscription-based
services available today, customers would be more will-
ing to use such services if we could guarantee that access
to the digital goods is anonymous and their preferences
and access patterns cannot be tracked. That is, if custom-
ers can purchase their subscription anonymously (either
by authenticating using an anonymous authentication
scheme, or by purchasing the card anonymously from a
public bookstore or cyber-café) and further interaction
with the server does not reveal customer orcard-specific
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information while still allowing access to the authorized
set of digital goods, then customer privacy is guaranteed.

1.1 Motivation

During the confirmation hearings of a nominee for the
U.S. Supreme Court back in 1988, the issue of which
movies he had rented came forth. The records of which
movies he had actually rented, had been obtained by a
local Washington newspaper from a video rental store,
by simply asking the store for them. Today the Video
Privacy Protection Act (18 U.S.C. 2710) prevents video
stores from releasing such information without the cus-
tomer’s written consent, but it is nevertheless all too
easy for such records to be released nevertheless, either
inadvertently or through a break-in, spy-ware, insider
misbehavior (rogue employees), social engineering, etc.
Moreover, the video-privacy bill is specifically about
movie rentals (it does not cover, e.g., magazine and other
subscriptions). The problem is exacerbated in the online
word, as it is then possible for a server to determine
not only which material the customer accessed, but also
how many times, when, for how long each time, etc.
For example, a customer who accesses much material
about a disease runs the risk of an inference being made
about her having that disease (or having a lifestyle that
puts her at risk for it). Some recent encryption-based
digital-rights management technologies not only reveal
which encrypted material was downloaded, but also the
exact times at which the user chose to view the down-
loaded material (as each viewing requires that the server
sends a key to the client-end viewing software that is en-
trusted by the content-owners with decrypting/display-
ing the material and then destroying the key). These
technologies are used for such purposes as protecting
the revenue-streams of content-owners against piracy,
allowing corporations to enforce policies on documents
and emails without fear of employee non-compliance
(e.g., to remotely shred an old document or email, the
server simply deletes the key associated with it, and the
employees’ hard drives are left with unusable encrypted
material). Many of the technologies that have been de-
ployed, or are under development, have chilling privacy
implications. Even as they have such large potential for
damage to privacy, these techniques have largely failed
to prevent piracy, as they are typically defeatable by a
determined attacker. This is why hardware-based dig-
ital rights management techniques are being deployed
(they are much harder for an attacker to crack than
purely software-based ones) even though they could en-
able more stealthy ways for software publishers to spy
on users, to know what is on a user’s computer, to con-
trol what the user can and cannot execute, view, connect

to the computer, print, etc. Although our schemes use
tamper-resistant cards, they do not harm user privacy be-
cause atno time does a card “know” who the customer is.

The customer and regulator complaints (including
lawsuits) filed against a major clickstream-information
collecting company, alleging what amounts to cyber-
spying, is but one example illustrating people’s sen-
sitivity when it comes to the tracking of their online
activities (even for apparently innocuous marketing pur-
poses). These fears may be well justified, because his-
tory is full of examples where information collected for
a benevolent purpose was subsequently used for nefari-
ous purposes (even prior to the cyber-age, e.g., the Dutch
government records that listed their citizens’ religion
were subsequently used by the Nazis for a horrendous
purpose). The misuse need not come from the data-
collecting entity: the data may simply fall in the wrong
hands through a security breach — the last few years have
seen an avalanche of security breaches in which private
information was seriously compromised.

In view of the above, a customer’s trust that the data
collectors will not misuse the data is only a first line
of defense (and a rather flimsy one, based on the evi-
dence). Privacy-conscious customers who find appeal-
ing a “defense in depth” that protects them from such
possible mis-haps, can take steps to avoid revealing their
identity to the server by, e.g., obtaining access through
anonymizing proxies, or simply from a cyber-café. This,
however, does not work well in the context of a for-
pay access to online material, that typically requires the
server to learn the identity of the subscriber through
(e.g.) the entry of a login and password tied to the sub-
scriber’s real identity through the subscription informa-
tion (typically including the name, email address, and
credit-card payment information). The need exists for
schemes, such as presented in this paper, that support
for-pay subscriptions without compromising subscriber
privacy, yet while preserving the content-owner’s rights.

1.2 The framework

As the number and the level of maturity of services that
offer access to digital goods grow, the level of flexibil-
ity of such systems will also grow. To make access as
convenient to the customers as possible, such systems
might allow customers to subscribe to items of their
choice with fine granularity, and not limit their choice to
a small number of predefined subscription types. In the
most flexible setting, the system allows each customer to
select a set of objects to which they wish to have access
and correspondingly pay for. Depending on the struc-
ture of the data repository, a customer may be able to
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select individual items or groups of items based on their
type, topic, or another classification scheme. The cus-
tomer then receives an access policy configuration that
is unique to her subscription request.

With this model in place, the service provider can no
longer store a complete description of customer access
rights at his end, because if he did, it would violate pri-
vacy requirements. A solution is to store access rights
at the customer end using tamper-resistant devices such
as smartcards. The main challenge is then to design a
scheme that would permit the customer to access the
goods to which they have subscribed and at the same
time preserve their anonymity by making their transac-
tions untraceable and unlinkable'.

Since customer policy configuration is stored on weak
devices such as smartcards, such devices are normally
limited in their computational power and storage space,
especially if their cost must be kept low (which is the
case, for instance, with short-term orders and/or dispos-
able cards). Limited resources, however, conflict with
our intent to provide flexible access to the items of cus-
tomer choice, if the size of the data collection is very
large. There is therefore a need for techniques that per-
mit succinct representation of customer rights and avoid
the use of expensive computations.

If a card that stores a customer’s subscription set does
not have enough capacity to store at least one bit per
item in the (potentially huge) data repository, then it
becomes impossible for it to exactly represent all pos-
sible subsets of the repository items. Thus, some items
or subset of items will have to share the same configu-
ration and introduce “false positives” into the scheme
— a false positive is an item that was not listed in the
subscription, but which the customer is permitted to
access. This model is acceptable if the probability of a
false positive (PFP) is small enough. A major goal is
then to design a scheme for computationally efficient
access control enforcement under space constraints that
minimizes the number of false positives implicit to each
card. Of course, false negatives are not tolerated: a cus-
tomer who has paid to subscribe to an item must always
be granted access to that item. Minimizing false posi-
tives is not the only requirement: others include pro-
tection against sharing of false positives information by
unscrupulous users, providing the users with transaction
untraceability and unlinkability, and forward compati-
bility of the scheme; these, and other design goals, are
stated in more detail later in the paper.

I Ttis a consideration that privacy may be lost, if a dishonest cus-
tomer attempts to misuse the system by, for instance, breaking the
card and distributing its contents to a large number of people, but
for honest subscribers access will always be anonymous.
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1.3 Counter indications

Our schemes are suitable for the realm of digital-rights
management, in situations where a false-positive access
to a document or a music is tolerable if it has a rea-
sonably low probability of occurrence and the negative
consequences would be tolerable if it were to occur.
Both conditions are important because, even when the
probability (call it p) of a false positive is reasonably
low, if the damage (call it d) from a false positive is
large enough, the expected damage p x d may be unac-
ceptably high in some situations. In view of the above,
the schemes described in this paper should not be used
in situations where a false positive has a catastrophic
consequence, such as unauthorized access to a patient’s
medical records, or the software that controls a power
plant’s machinery.

But even when the probability of false positives is
close to zero, and/or when the apparent and measur-
able damage from such a false positive is zero, there are
situations where privacy-preserving techniques are not
recommended (any of them, not just the ones we pro-
pose). These are situations where even legitimate (not
just false positive) accesses could be a cause for concern
if they follow certain patterns or are done by certain
individuals. Specifically, privacy-preserving techniques
are not appropriate if the legitimately accessed material
is of such a nature as to inherently require monitor-
ing or auditing by law-enforcement agencies. For exam-
ple, if the on-line material is restricted-access because
of its possible use to evil-doers intent on acts of vio-
lence, financial fraud, or disruption, then an audit trail
of which authorized individuals accessed it (and when
they accessed it) is needed by law-enforcement agencies
to determined (e.g.) who “leaked it out” in an unautho-
rized fashion. The use of privacy-preserving techniques
becomes obviously problematic in such a framework,
as it would serve to protect the culprit. The framework
we have in mind for our schemes is therefore more one
involving commercially valuable but innocuous content,
such as music, movies, e-books, databases of past sports
events and data, historical trading transactions (stocks,
bonds, commodities), and other specialized databases
that are unlikely to be of use to criminal elements.

1.4 Our contributions

Our contributions are as follows: we give two solu-
tions that address the problem of flexible and privacy-
preserving access rights. Our first solution utilizes
random permutations and does not place any constraints
on the amount of storage space that should be avail-
able on the smartcard. Instead, it searches for the best
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solution that meets the space requirements and satis-
fies the service provider. The second solution is based
on the use of minimal perfect hash functions (MPHF),
and differs from the previous solution in that it is guar-
anteed to result in a low rate of false positives for any
subscription order, but uses storage space proportional
to the subscription size. More precisely, given a smart-
card with O(mc) storage space, where m is the number
of items or groups of items included in the subscription
and c is an arbitrary parameter, this scheme achieves
the rate of false positives m~°. For both schemes, we
provide solutions for (1) “flat” data repositories, where
the collection of documents is not organized into a data
structure; and (2) hierarchically structured collections
of data items such as trees.

1.5 Organization of the paper

The rest of this document is organized as follows: In
Sect. 2, we review prior related literature. Section 3
gives a more precise problem description and lists de-
sign goals. In Sect. 4, we describe our first, permutation-
based approach for both unstructured and structured
data repositories and provide its analysis. In Sect. 5,
we give the second, MPHF based approach, its analy-
sis, and extensions. Section 6 compares the schemes and
concludes the paper.

2 Related work

Work conducted on XML explores the problem of ac-
cess control for online data repositories, which includes
securing access to XML documents and using XML
as a tool for specifying security policies (see, e.g., [6—
8,18,19]). Bertino et al. [5] use binary strings to rep-
resent both customer policy configurations and docu-
ment policies, but they allocate one bit per policy on the
assumption that there will be a limited number of differ-
ent subscription types. Thus, their approach becomes
inefficient as the data repository grows in size and each
customer chooses a customized document subscription
set. The topic of digital libraries is also related to this
work, but literature on digital libraries usually does not
address access control.

The idea of achieving space efficiency at the cost of
a small probability of false positives was introduced in
Bloom [9]. Bloom filters support approximate member-
ship queries and are widely used in a broad spectrum
of applications ([12,20,27], to name a few). Such data
structures achieves a better space utilization than sim-
plehash representation, but the filter length (which in

our case corresponds to the card capacity) still should
be larger than the total number of items in the set to
result in a reasonable performance. This is not suitable
for cards of small capacity, and even customized Bloom
filters do not appear to provide acceptable results.

Other techniques for concise representation of
portable access rights were used in the context of soft-
ware license management [1,4]. These solutions, how-
ever, do not apply to our problem, mainly because we
cannot afford to avail ourselves of resources external
to the card (as was the case in [1,4]). The more recent
work in [13], on the other hand, considers the same prob-
lem of portable and flexible access rights for large data
repositories. In [13], the authors consider static policy
assignment to all repository documents, which makes
addition of new items problematic without perform-
ing periodic policy updates (after which all smartcards
must be refreshed) and also makes it possible for dis-
honest users to share and use information about false
positives.

Some of our solutions use MPHF as their underlying
building blocks. MPHFs have received significant atten-
tion, and a number of algorithms can be found in [21-
23,17]. There are MPHFs and order-preserving MPHF's
(OPMPHFs) that for random m strings take the total
of O(m) bits to store the functions (and this is also the
lower bound). See [21,23] for more detail.

Work on unlinkability and untraceability was started
by Chaum [16] and received significant attention in re-
cent years. In particular, work on unlinkability includes
anonymous group authentication ([2,11,15,24-26,28-
30] and others) and unlinkable serial transactions [31]
for subscription-based services. Prior work, however,
does not account for the fact that descriptions of ac-
cess rights (or service types) may be long and required
to be portable, while we describe schemes that
combine compact policy representation with transaction
unlinkability.

3 Problem specification
3.1 General model

The general model used in our work is depicted in Fig. 1
and consists of two stages. During the initialization stage
—which can take place in a bookstore, at a public library,
or at home —a customer chooses items of his choice, pays
for the items selected, and receives a customized card
that subsequently permits access to these items. During
the card usage stage — which can likewise be done from
a home computer, library, etc. — the customer can re-
quest access to any items from the repository. If the card
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Fig.1 General model of

Initialization

operation

1. Customer chooses m items for purchasing.
Server processes the order and creates a card.
3. Customer pays and receives the card.

granted

Card

1. Receives from the user a re-
quest to access item ¢
2. Checks if access can be

3. Anonymously authenticates —
to the server and requests
item ¢ on behalf of the user

Operation
Server
Verifies authentication
credentials
“— Sends item ¢ to the requester

permits access, it uses the built-in anonymous authen-
tication protocol to prove its authenticity to the server
and then obtains the item from the server.

Here, by “server” we do not necessarily mean a re-
mote server. Instead, it could be a local (trusted) content
player at the client end or any other mechanism used by
the content owners to enforce their policies. In that case,
the encrypted content is already stored at the client’s
end and the server grants access by decrypting and then
displaying it. Therefore the model does not necessarily
assume network connectivity for data access.

Throughout this paper, we assume that a card is
authentic and can anonymously and at low computa-
tional cost authenticate itself to the server. A number
of solutions that range from trivial secret key schemes
to more complex and provably secure schemes (e.g.,
[2,25]) can be used to achieve this goal. Card unforge-
ability is achieved through other, standard techniques
described in prior literature and is out of scope of this
work.

As an example of a provably secure scheme that al-
lows users to anonymously access the service, we show
how group signatures (e.g., [2,3,10,14]) can be used to
achieve this goal. A group signature is a cryptographic
construction that allows a member of the group to sign
messages anonymously on behalf of the group. In case
of a dispute, however, the identity of the originator of
such a signature can be revealed by a designated author-
ity (called group manager). The interactive version of
group signatures (what is needed here) is called identity
escrow, and each group signature scheme can be used in
the interactive mode. In such schemes, there is a protocol
that allows a user to join the group and become its mem-
ber (which in our case will be done at the subscription
time). As a result, user credentials for the group sig-
nature scheme and her access rights that permit access
to the documents in the repository will be written on a
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card. Then every time a user wants to access an item at
the server, she will first anonymously authenticate to the
server using her group signature credentials and then in-
voke her access rights to obtain access to the document
of her interest.

3.2 Notation

In the rest of this paper we use the following nota-
tion: the data repository contains »n items numbered 1
through n. A customer can request access to (and accord-
ingly pay for) m items, 1 < m < n. Access rights are
stored on a card of limited capacity of k bits, where
k <nand k < mlogn.?

We use the term order to refer to a subscription or-
der of m documents for which the customer pays and
receives a card that permits access to those documents.
We use the term request to refer to a request to access a
document by a customer who already possesses a card
and wishes to view a document. A customer subscrip-
tion order of m items is denoted as {iy, .. ., i;,}, where i
uniquely identifies a single document in the repository
and1<ij <---<ip<n.

3.3 Design goals

The design goals that we require any solution to have
are as follows:

Low rate of false positives. The probability (or rate) of
a false positive (PFP) — the probability that a random
document not in the set of m subscription documents is

2 If k > mlogn then the card can explicitly store the m items. So
we henceforth assume that & is less than 7 log 1, i.e., that space on
the card is tight.
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among the documents to which access is authorized — is
the main evaluation criterion of any approach, and the
goal of this work is to minimize such a PFP. The PFP
obviously depends on the storage space available on the
card.
Transaction untraceability and unlinkability. For cus
tomer privacy, we require that after a customer buys
an access card and uses it to retrieve an item from the
repository, it is not possible to use the data sent in the
request to tell with probability significantly greater than
a random guess which customer is making this request.
Similarly for transaction unlinkability, we require that
given two access requests it is not possible to tell with
probability significantly greater than a random guess
whether these two requests originated with the same
user.
Unique policy representation (“no sharing of false posi-
tives”). It is also a design requirement that every
policy representation stored on a card is unique. More
precisely, given two subscription requests that contain
identical sets S; and S; of items to be purchased, their
representations stored on access cards C; and C, will
be different and the false positives implicit to each card
will also be different. We require this property in order
to eliminate the possibility of sharing information about
false positives by dishonest customers. When this is not
the case and a fixed set of items triggers the same set
of false positives, dishonest users might share this infor-
mation through public channels such as the Internet,
making the scheme unusable for the data provider.
Note that this will prevent sharing of information
about false positives, but not all possible forms of infor-
mation sharing. That is, content sharing by dishonest
users is always possible regardless of an access control
mechanism used. Our goal here is to prevent sharing of
information about access rights and, more importantly,
information about illegitimate access rights that the user
should not possess. Access rights information is much
more convenient to share than voluminous contents.
No additional sources of information. The schemes we
design are for online data repositories that, using a card,
can be accessed from a number of places such as termi-
nals at public libraries, bookstores, home workstations,
and other places. Therefore, if a scheme were to require
some additional information to be stored on external
storage, in our scenario there is no reasonable place at
which such information could be stored (and, as was
mentioned above, no user information can be stored
at the server itself by the untraceability requirement).
Thus, the access card itself should contain all informa-
tion necessary to perform access verification.
Fast access verification, fast card generation time. These
parameters also serve as evaluation criteria of each

scheme, and in general we require card generation time
to be bounded by a low-degree polynomial in n or, pref-
erably, by a polynomial in m. Access verification time
should be bounded by O(k), where k is the space avail-
able on the card, because each card is assumed to be a
computationally weak device.

Forward compatibility. In any proposed solution, if a
card is created at time #; when the data repository con-
tained n; documents, it also should stay operational at
time #; > t; when the data repository contains ny > n;
documents. In other words, the scheme should remain
operational as new documents are added to the data
repository.

Another important feature of a scheme that pro-
duces access right representations is Support for dy-
namic changes to the repository. Namely, every time
changes to the data repository happen, previously is-
sued cards with user access rights remain functional
on the modified version of the data repository. Note
that the forward compatibility requirement above par-
tially covers this feature, but, for instance, deletions from
the repository are not addressed. Other changes to the
repository include restructuring of the items currently
present in the repository. This, however, is applicable
only to structured data collections such as, e.g., hierar-
chies and can be handled solely using support for addi-
tions and deletions. In our design requirements we do
not strictly require support for document deletions from
the repository, because the scheme can be used regard-
less of availability of this feature. That is, if deletions are
not handled automatically, the repository can be period-
ically “cleaned” (e.g., once a year), removing unwanted
documents all at once. We, however, analyze our solu-
tion with respect to such support and show how dynamic
changes can be handled in each of the schemes. It is also
worth mentioning here that a document cannot be re-
moved from the data repository while there is at least
one customer with valid access rights to that document
(i.e., documents are not likely to be removed often).

Note that the above requirements make our problem
very different from mere data compression. Another
difference from data compression is that here each rep-
resentation on the card must be usable “as is” without
uncompressing it first: there is no room in the card for
decompression, and using server memory for decom-
pression would reveal enough about the card to make
profiling of the card’s usage patterns possible (recall
that contents of two cards are different even if both
of them contain the same subscription set. They are in
some sense an implicit ID for the card and should there-
fore not be revealed to the server). Client memory is not
suitable for decompression either because it cannot be
trusted.
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4 Permutation-based approach

In this section we present our first solution. We first
describe our approach to an unstructured collection of
documents and provide its analysis. Structured collec-
tions of documents are addressed in Sect. 4.7.

Recall that the card’s capacity is & bits. In the rest of
this section we assume that those k bits are divided into
£ slots of log n bits each and therefore the card’s capacity
is k = O(Clogn).

Our solution consists of generating random permuta-
tions of the documents included in an order until they
are clustered in such a way that the cost (in terms of false
positives) of storing the permuted documents on a smart
card is below a certain threshold (defined later). After
generating a permutation of the documents, we run an
evaluation algorithm to compute the cost of the optimal
solution for that particular set of permuted documents.
If the costis acceptable, the algorithm terminates and the
solution is written to the card; otherwise, a new permu-
tation is generated and tested. The information written
on the card includes data that can be used to reproduce
the permutation, as well as a number of document inter-
vals that indicate access to which documents should be
granted. The intervals include all documents from the
subscription order and as few additional documents as
possible.

Consider an oversimplified example where the repos-
itory has the size of 20, our card can store two intervals,
and we receive a customer subscription order for docu-
ments 1,5,7,9,13, and 19. Suppose that after permuting
the documents we obtain set {2, 3, 4, 15, 16, 18}, so the
best option in this case is to use intervals 2—4 and 15-18
for storing the set on the card. The cost of a solution is
computed as the number of false positives, and in this
case the cost of the permutation is equal to 1.

Both the random permutation seed and the document
intervals are subject to the card’s storage constraints.
Since the smartcard’s capacity is O(£ logn), we can use
it to store O(¢) numbers within the range {1, ..., n},
or ¢ intervals. The permutation seed can also be up to
O (¢ log n) bits long.

Every interval included in a solution can be either
positive, i.e., specifies a range of documents to which
access should be granted, or negative, i.e., specifies a
range of documents to which access should be denied.
In the case of unstructured data (i.e., where the data
repository is a mere collection of numbered items, not
organized into a hierarchy or any other type of data
structure), negative ranges do not improve the result by
decreasing the cost of a solution, as the lemma below
shows (we, however, show later that they are necessary
for structured data).
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Lemma 1 For unstructured data, for every solution of
cost C expressed using both positive and negative ranges
there is a solution of cost C' expressed using only positive
ranges, such that C' < C.

Proof See Appendix. O

We first present an algorithm for producing a suitable
encoding to be placed on a card (Sect. 4.1). This is a
high-level algorithm that tries different solutions until
the conditions corresponding to the policies are satis-
fied. It uses two additional algorithms as its subroutines:
an algorithm to produce a permutation (Sect. 4.3) and
a linear-time algorithm to compute a cost of a permu-
tation (given in Sect. 4.2). We give asymptotic bounds
of our solution and also discuss possibilities for gener-
ating a random permutation. Later in this section we
explore this approach in terms of its economic feasibil-
ity (Sect. 4.5), and also provide an extension that covers
structured data (Sect. 4.7).

4.1 Algorithm for producing a solution

To find a suitable encoding for a customer order, we
might have to try numerous permutations of n elements
until one that satisfied certain criteria is found. These
criteria can be expressed in terms of the cost of a solu-
tion (e.g., the number of false positives for the permuta-
tion produced falls below a certain threshold), in terms
of a time interval during which a solution should be
computed, or some other requirements. These rules are
examined in more detail in Sect. 4.5.

The algorithm we provide below takes a subscription
order of m documents and a set of rules t that tell the
algorithm to stop when they are satisfied. It runs until
a suitable solution is found and returns an encoding to
be stored on a smartcard, which consists of a permuta-
tion seed s and ¢ intervals that optimally represent the
documents {iy,...,n}.

Input: The repository size n, a customer order of m
documents {iy,...,i,}, and a set of stopping crite-
riat = {r1, ..., Tt}.

Output: A seed s for generating a permutation and ¢
intervals to be stored on the smartcard.

Algorithm 1

1. Seedthe permutation algorithm with arandom num-
ber s.

2. Permute the m documents to get p; = m,(i;) for each
document i; € {it,...,in}.

3. Sort the p;’s (O(mlog(m)) time).
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4. Run the evaluation algorithm to find the cost of the
permutation (O(m) time, per Sect. 4.2).

5. Apply the evaluation rules 7 to the result: if a suffi-
cient subset T/ C 7 of them, 1 < |t/| < 1, is satisfied,
output the solution. Otherwise, go to step (1).

The asymptotic bound of a single run of this algorithm
depends on the choice of the permutation function (dis-
cussed in Sect. 4.3). The total running time of the algo-
rithm depends on the evaluation criteria and cannot be
expressed as a function of the input parameters in the
general case. The upper bound of the algorithm is O (n%)
loop invocations, but typical values are lower. This time
is constrained by the space available for storing a ran-
dom seed s: there are O(2¢1°¢") = O(n') possible seed
values that can be stored on the card.

4.2 Algorithm for computing the cost of a permutation

The algorithm given in this section corresponds to step
4 of Algorithm 1. As the input, it expects a set of m
distinct permuted documents sorted in increasing order
p = {p1, -.., pm} and computes ¢ disjoint intervals of
the minimal cost that include all of the p;’s and as few
other documents as possible. Our algorithm works by
computing distances between the documents in the set
p and excluding the largest £ — 1 of them, so that the
overall cost of the covering is minimized.

Input: The repository size n and a sorted set of m ele-
ments p = {p1, ..., Pm}-

Output: ¢ disjoint intervals that contain all of the p;’s
and as few other elements as possible.

Algorithm 2

1. Let x be the value of pq, y the value of p;,,. Com-
pute ci,...,c;—1, Where ¢; is the number of docu-
ments between the elements p; and p; 1 not includ-
ing either p; or p;1. Thatis, ¢; = pjy1 — pi — 1.

2. In O@m) time select a (¢ — 1)th largest among
C1se.sCm—1 (say it is ¢j).

3. In O(m) time go through cy,..., ¢;;—1 and choose
¢ — 2 entries that are > ¢;. Those entries and ¢; cor-
respond to the £ — 1 “gaps” between the optimal k&
intervals, i.e., they define the optimal ¢ intervals.

Note that the “cost” of the solutionis C = ¢y + --- +
¢m—1— (sum of the largest £ — 1 ¢;’s), which also proves
the correctness of the algorithm because ¢ + - - - 4+ ¢, 1
is the number of documents between positions x and y
other than the elements of p, and the best that can be

done is by “excluding” the large ¢;’s from the chosen
intervals. It is also clear that the algorithm runs in O (m)
time, since every step (1)-(3) runs in O(m) time.

The actual monetary damage caused by the false
positives might not be linear in the number of false pos-
itives, but instead could be some other (possibly arbi-
trary) function specified by the service provider. In this
case, however, the algorithm will still produce correct
results, and the cost function itself can be incorporated
into the set of stopping rules 7, as we explain in Sect. 4.5.

4.3 Algorithms for producing a permutation

There are several well-known methods for computing
random permutations. Any method that has the follow-
ing properties should be suitable for our approach:

— The permutation can be specified by a seed, i.e.,
given a seed value, the permutation could be repro-
duced from it. Recall that the set of storable seeds
does not “access” all possible permutations of n ele-
ments, but only a random subset of O(n) of these
permutations>. This turns out to be enough in prac-
tical situations (see discussion in Sect. 4.5).

— The algorithm allows concurrent computing of a
mapping for a single element. It is then not nec-
essary to compute the permutation mappings for
O(n) documents of the data collection at the access
verification time just to obtain one of them that we
are interested in. We can also directly compute the
mappings for the m documents included in the order
during card creation time without having to generate
all of the n mappings.

As one example of a permutation satisfying there
requirements, consider the case when ' = n + 1 is
prime, g is a generator for that prime, and a permu-
tation seed is specified as an integer x, 1 <x < n’ — 1.
The permutation consists of any integer i, 1 <i<n'—1,
mapping into 7, (i) = x - g mod #’. It can easily be seen
that the mapping 7 so defined is a permutation (i.e.,
there are no collisions). Of course, the use of x as a seed
means that only n of the possible permutations of the
n elements are “accessible”. To extend the reachabili-
ty of the seed from only n permutations to the full n’
allowed by the available O(£logn) bits of storage, we
would simply store as a seed ¢ distinct (rather than a
single) such x values x1, ..., x¢. Each x; defines a permu-
tation 7y, in the manner described above: for the jth such

3 In cases where a sequence of random numbers is needed by
the permutation algorithm, the seed can be used to initialize a
pseudo-random number generator.
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permutation, i maps into (D) = x,-'g" mod #’. The entire
permutation described by this seed of length ¢ log n bits
is then the functional composition of the permutations
TxsMxy, - - > 7y, (in that order). There are n' possible
choices for this permutation, as required.

In fact, any encryption function whose range and do-
main are [1, n], and whose key space is [1, n‘], could be
used for our purpose of permuting. That is, if x is the
seed, then (i) is simply the encryption of i using x as
key. The fact that n is too small for cryptographic secu-
rity is not an issue here, because we are using encryption
not to hide but rather to permute.

4.4 Card operation

The algorithms presented above describe card genera-
tion, but they imply a corresponding operational use of
the card, which we sketch here. We assume that the card
is tamper-resistant, so that the unforgeability constraint
is satisfied; techniques for achieving tamper-resistance
can be found in the literature and are beyond the scope
of this paper. Also, the card must anonymously authenti-
cate itself to the server using a low-computation authen-
tication suitable for smartcards. Policy enforcement is
performed using the policy encoding placed on a card
as follows. Given a document index i access to which is
being requested from the server, and a card that stores
a permutation seed s and ¢ intervals, the verification
process takes the following steps:

— The card computes a permuted value of i as p; = 7, (i).

— The card searches its £ intervals for p; to determine
whether p; is covered by one of them. Since we can
sort all intervals before storing them on the card, this
step can be done in O(log ¢) time using binary search.

— If p; is covered by one of the ¢ intervals, the card
requests the document i from the server. Otherwise,
it notifies the user about access denial.

One can see from the above that the untraceability and
unlinkability constraints of our design (goals of Sect. 3.3)
are satisfied: each card anonymously authenticates it-
self and does not send any information to the server
that might happen to be unique and used to link two
transactions together. The card also does not require
any additional sources of information to enforce proper
access control and uses an efficient method for such
enforcement, as required.

4.5 Economic analysis

This section analyzes the practicality of the scheme
described above. We explore the possibility of using the

@ Springer

scheme under different settings, and examine what pol-
icies a service provider might specify in order to use the
model as efficiently as possible. We also make the “stop-
ping criteria” that govern permutation selection process
more precise.

4.5.1 Values of interest

As input, we are given the size of the data repository
n and the number of documents in a customer order
m*. Other parameters of use for determining what an
acceptable cost is are:

Ccard(m) —the price a customer pays for an order of m
documents, which can be a possibly arbitrary func-
tion of the documents that comprise the order.

t(m) —the maximum number of requests to documents
access to which was denied. Each card can count the
number of attempts to view documents that were
denied. When a customer requests a document not
bound to the card, not only is the access denied,
but also the permitted limit of unsuccessful requests
is decremented. After ¢ such attempts, the count
reaches zero and the card is self-invalidated (i.e.,
the policy here is “f strikes and you are out”). This
is to prevent customers from probing their cards for
false positives, e.g., by trying all documents in the
data repository. With this mechanism in place, each
customer should be informed about ¢ at the time of
purchasing the card and should be given an explicit
list of the documents included in his order.

m'(n, m) —the number of documents that come for free
with a card (i.e., the “false positives”). This value
is computed as a by-product of Algorithm 2, and
implicitly reflects the card’s capacity £.

n'(n, m) — the number of documents in which an at-
tacker is interested (other than the m he ordered).
This value is useful in measuring the attacker’s eco-
nomic gain in case of discovering free accesses to
documents. In the worst case, any free document
can be valuable to the attacker. In the best case, the
attacker has zero interest in anything outside the m
documents she ordered.

4 In reality, we have the entire order {iy, ..., i,;} as an input
parameter. For simplicity of presentation, we assume that the cost
of each document is the same, and m can be treated as a sufficient
representation of the set. Similar analysis can be carried out when
document prices differ from one to another. Then each derived
value that takes m as a parameter can be computed as a function
of the set {ij, .. ., i, } itself.
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4.5.2 Policy alternatives

Each service provider deploying this approach might
have one or more varying criteria that define an accept-
able “false positives” cost of a card. Below we list poli-
cies that can be used during card generation to govern
execution of Algorithm 1:

1. Threshold for the number of false positives m’ that
a card contains. This policy might dictate that the
absolute value of the number itself is constrained
(e.g., fm') < ml,,,), or its ratio to the number
of documents in the repository or to the number
of documents in the order is constrained by some
threshold (e.g., f ( (m')/h(n)) < mip, or

f(g(m') /h(m)) < mip,,, where f(x), g(x) and h(x)
are arbitrary functions of argument x). We may
consider a policy that lists several conditions but
requires satisfying a subset of them.

2. Constraints on the gain from cheating. In this type of
policies, we perform analysis of cheating in terms of
the attacker’s loss versus his gain after attempting
to access ¢’ out of the n —m documents not included
in his order. Suppose that ¢/ > t. The expected gain
from the attack in this case is the difference between
the cost of the documents acquired for free from
the list of n’ documents of interest, and the cost
of losing the card due to this behavior. The gain
is then computed as the probability of successfully
getting a free access to a document multiplied by
the document cost, while the loss is computed as
the probability of losing the card multiplied by the
cost of the card:

E(gain) ~ 1 - T Ceard X (0]

Ye(mn'
Tz > ( )

t'=t

where c(m’) is the cost of having access to m’ doc-
uments computed according to some pricing func-
tion. Here p = (m’/n — m) specifies the probability
of not being caught, while ¢ = 1 — p is the proba-
bility of begin caught.

Similarly, we can compute the expected gain when
the number of unauthorized attempts is kept below
the maximum, i.e., ¢ < t. In this case, the expected

gain is computed based on the probability of getting 4.

free access, and there is no loss for the attacker:

c(m’) . n

E(gain) >~ ¢ - @)

n—m n—m

In the worst-case scenario, the attacker might be
interested in and benefit from any document ac-
quired for free, i.e., ' = n — m, and we can also
assume that ¢ >~ ¢, to maximize the gain. Then Eq. 1
becomes

E(gain) >~ ¢ - com)
n

—m

To keep the attacker’s gain low, we might constrain
this value by some threshold. Equation 2 gives such
a constraint where the coefficient « plays the role of
a threshold value that keeps the card’s loss within
a specified bound.

= - Ceard (2)

Constraint on certain items being among the false
positives. The previous constraints take into ac-
count only the total number of false positives with-
out distinguishing them, and do not account for the
fact that the repository might contain a number of
generally popular items. Thus, another constraint
might be to lower the value of false positives for
a customer by excluding such valuable items from
the false positives. We refer to such items in high
demand as “hot” items, and for each customer they
can be either system-wide (the same for everyone),
card-specific (based on the subscription order at
card-creation time), or both.

Note that, from the privacy point of view, it is
acceptable for the data owner to determine the hot
items for a card based on the card’s subscription
order (which must be given anyway at the time of
purchase, e.g., during anonymous card purchase at
a vending machine or bookstore). Later on, as the
card is used, the card does not disclose data about
the subscription order or the card-specific forbid-
den hot items.

Once the set of such hot items for a subscription or-
der is determined, the policy might state that there
is a threshold on the number of such items that
can be among the false positives (the threshold can
be stated similar to the total number of false posi-
tives in the first rule). Thus, if a particular instance
of a card does not satisfy this requirement, a new
instance should be generated.

Timeout. Under some policies, the card creation
process might have to be carried within a certain
period of time. Then if no suitable permutation is
found during that interval, the best permutation
tried so far is used.
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Based on the policies listed above, we create a set of
stopping criteria by possibly combining two or more
conditions in such a way that what the card produced
always satisfies the card issuer.

4.5.3 Sample policy

Suppose a service provider employs a policy in which
the number of attempts to access a document not in-
cluded into the customer’s policy configuration, ¢, can-
not exceed 10% of the number of documents m in the
customer’s order. (Recollect that each customer at the
time of purchase is given a list of all documents included
in the order, so that z can be kept small.) The service pro-
vider also requires that the maximal customer gain from
“false positive” documents cannot exceed 5% of the cost
of the order. Evaluation parameters for a document per-
mutation then can look like: t = 0.1m, n’ = n — m, and
a = 0.05. Given n and an order consisting of m docu-
ments, we use Algorithm 1 to compute m'. According to
Eq. 2), m’ should satisfy the following condition:

0.1-m-c(m)

n—m

< 0.05 - ccard

If the condition is not satisfied, the algorithm is invoked
to try a new permutation.

With this policy in place, a card can be generated very
efficiently for any order because the number of false
positives is not required to be low. For instance, suppose
that c(m’) >~ m’ - ¢y and cgapq(m) >~ m - ¢1, where ¢y is a
unit price of a document. Then, in order to comply with
the policy, we must have that m’ < (n — m)/2, which is
large and not difficult to achieve for any order of m doc-
uments. This tells us that the scheme can accommodate
a wide range of reasonable policies.

4.6 Analysis of the approach

Our proposed solution is compliant with the desired de-
sign properties and minimizes the total number of false
positives bound to a card. More precisely, the design of
our scheme ensures that goals of transaction unlinkabil-
ity and untraceability, unique policy representation, no
additional sources of information, and fast access veri-
fication time listed in Sect. 3.3 are met. The goal of for-
ward compatibility is achieved by using unique policy
representations that “capture” the state of the repos-
itory at the time of card generation and are self-con-
tained. As we add more documents to the repository,
the old cards can still be used, for instance, to reproduce
permutations of the documents from the previous state
of the repository and provide access to the documents
from customer subscriptions.
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Our permutation approach also guarantees a low rate
of false positives, especially if this constraint is a part of
the algorithm’s termination criteria. Depending on the
policies enforced by the service provider, the scheme can
be evaluated on its time requirements, i.e., how long,
on average, it might take to generate a card. Thus, it
might or might not comply with the goal of fast card
generation. If the service provider employs a policy that
includes a timeout, then in-house card generation is al-
ways achievable. If, on the other hand, he places more
weight on minimizing the number of false positives, then
this constraint might be relaxed.

4.7 Structured data: trees

This section extends our approach to structured data
collections such as trees. In many data repositories doc-
uments are stored in hierarchies, which makes it possible
to utilize the repository’s structure and reduce the num-
ber of false positives in the solution computed. Since in
reality many customers do not select a random set of
documents, but rather are interested in certain topics
(which will guide their selection of items to be included
in the order), great space savings (and thus a signifi-
cantly reduced rate of false positives) can be achieved
if instead of storing individual items we permit storing
categories of items. In fact, the software that aids the
user in selecting items to be included in his subscription
can help to achieve space savings in cases of hierarchi-
cally structured documents. That is, it will provide the
user with in option of selecting the entire section or
category of documents at every level within the hierar-
chy, in addition to allowing selecting documents one by
one. The quantification of such savings, however, can-
not be performed in the general case, because it heavily
depends on the type of the hierarchy and user patterns
in selecting documents.

Now we present our approach for building user cards
in case of hierarchically structured repositories. Sup-
pose we are given a tree of n documents and a sub-
scription order of m documents. The card’s capacity is
still k = O(£logn) bits or O(¢) records, but in this case
each record, in addition to two numbers that specify a
range, might contain some other information. We con-
sider both positive and negative ranges for encoding
documents on a card. We also consider two different
types of placements: when a positive or negative assign-
ment is placed on a node v, it can either affect the entire
subtree rooted at v —we denote this case as recursive —or
affect only the node on which the assignment is placed
— we denote this assignment as /ocal. The case where a
depth parameter can be stored at v, so as to limit the
depth of the subtree included, will be considered later
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in this section (such a depth parameter limits the depth
of the nodes influenced by that range, so that nodes that
are farther than that depth below v are not affected).
When two ranges overlap, the more specific range (i.e.,
lower in the tree) is used. As before, the word “cost” is
used as the “cost of the false positives” (not the dollar
cost paid by the customer).

Throughout our algorithm, we use the following nota-
tions. For each node v, a cost of the subtree rooted at v
can be computed in two different contexts: positive and
negative. If a node v is evaluated in the positive con-
text — the cost is denoted by C*(v), — this means that a
positive range has been specified at its parent or above
the parent in the tree. In this case, if no new range is
placed at v or below, the entire subtree will be included
in the final solution. In this context, only negative ranges
placed at v or below have effect. Similarly, if a node v is
evaluated in the negative context — the cost is denoted
by C~ (v), —then it means that a negative range has been
specified at its parent or above, and by default the entire
subtree will be excluded from the solution. If no context
has been specified, we start in the negative context and
assume that no nodes are included in the solution unless
explicitly specified.

Our solution uses dynamic programming techniques;
and as with any dynamic programming approach, the
cost of an optimal solution at any given node v needs to
be calculated for several cases that differ in the number
of encoding slots available. Thus, we use C* (v, j) and
C~ (v, j) to mean the cost of encoding the tree rooted at
v in positive and negative contexts, respectively, with j
storage slots available, where 0 < j < ¢.

Here we provide an algorithm for binary trees, which
can naturally be extended to work for more general ¢-
ary trees with + > 2. When working with binary trees,
we typically use nodes u and w as child nodes of v. In
order to compute a cost of a subtree rooted at node v, we
need to consider two cases: computation of C* (v, ) and
C~ (v, j), which we describe subsequently. Let us con-
sider non-leaf nodes first and then proceed with leaves
of the tree. Time complexity of the algorithm for both
binary and arbitrary f-ary trees is given later in this
section.

4.7.1 Non-leaf nodes

Case of C*(v, j): When the cost is computed in the
positive context, we need to consider three differ-
ent cases.

Case 1: No record is placed at v. Then Ct(v, j) is
computed as:

Ct(v, ) = min{CT(u, i) + Ct(w,j — i)
+c1| 0 < i < j}, where ¢7 is 1 if v is not in
the order, and 0 otherwise.

Case 2: A negative recursive record is placed at v.
This case cannot happen if v is included in the
order. We compute the value as:

Cr(v, ) =min{C (u, )+ C (w,j—i—1)] 0 <
i<j-1

Case 3: A negative local record is placed at v. This
case also cannot happen if v is included in the
order. To compute C* (v, j), we use:

Ct(v, ) =min{C"(u, i) + CT(w,j—i—1)] 0 <
i<j—1)

After computing all of the values above, C* (v, j) is

assigned the minimum of the three values.

Case of C~ (v, j): Forthe negative context there are also
three possible cases.

Case I: No record is placed at v. This case cannot
happen if v is included in the order. The formula
for computing C~ (v, j) is as follows:

C~(v, ) = min{C~(, ) +C~(w,j—i)| 0 <i <)

Case 2: A positive recursive record is placed at v.
In the formula below, c; is set to 1 if v was not
included in the order, and it is 0 otherwise:
C=(v, ) = min{CT(u, )+Cr(w,j—i—1)+c(| 0 <
i<j}

Case 3: A positive local record is placed at v. This
case normally does not happen when v is not in
the order. To compute C~ (v, j), we use
C~ (v, ) =min{Ct(u, i) + CT(w,j—i—1)+¢1|0
<i<j}

Analogously to the previous case, C~ (v, j) receives

the value of the minimum of the three values com-

puted in these cases.

4.7.2 Leaf nodes

Case of C*(v, j): If j > 0 and v is not in the order, then
we can exclude the node from the solution by placing
a negative record at it. In this case, the cost CT (v, j)
is 0. Otherwise, no record can be placed at the node;
and the cost C* (v, j) is 0if v is included in the order,
and 1 otherwise.

Case of C~(v, j): If j = 0 and v is included in the or-
der, then C~ (v, j) should be set to 400 to prevent
this configuration from being chosen, as it does not
satisfy the algorithm’s requirements. In all other cases,
C (v, j)isO.

4.7.3 Complexity analysis

To compute the cost of an order, we use the above rules
to compute C~ (root, £). Every documents i included in
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the order is taken into account at the time of computing
the cost of the subtree rooted at node i. For a tree of n
documents and card’s capacity of ¢ slots, this algorithm
runs in O(n - £?) time for binary trees. For arbitrary t-ary
trees the algorithm gives O(n - £) time.

4.7.4 Access verification

Once a solution using the above techniques has been
computed and stored on the card, the card will perform
access verification as follows:

1. Onuserrequestto accessitem i, the card first checks
whether i is stored on the card in positive context.
If true, return accept. If i is stored on the card in
negative context, return reject. Otherwise, proceed
with the rest of the algorithm.

2. The card sends a request to the server to retrieve
the nodes on the path from i to the root of the tree.

3. The server replies with P = {p1,...,pq}, which is
the nodes on the path ordered from i to the root of
the tree.

4. Fori = 2to d, the card performs: if p; is stored on
the card with a recursive label, then if the context
is positive return accept, and if the context is nega-
tive return reject. If p; is not on the card or is stored
with a local label, proceed with the next node p; ;.

5. If none of the p;’s was found on the card, return
reject.

If P is short enough to fit on the card, then the server can
send it all at once. Otherwise it sends the path in batches
small enough to fit on the card. In practice, P is likely
to be small, as typical hierarchies tend to have small
height. For instance, hierarchies such as collections of
newspaper articles might have a very large total number
of nodes, but the depth of the hierarchy will be limited
by a small constant.

4.7.5 An extension to records of variable depth

Let & be the height of the tree. The above dynamic pro-
gramming approach can be extended to include all pos-
sible heights for each node v. This means that when we
compute a cost of a subtree C* (v, j) or C~ (v, j), we now
can specify the depth of the record placed at v, which
can vary from 1 to the height of the subtree rooted at v.
In this case, there is no need to distinguish between local
and recursive nodes any more, as they are replaced by a
single record in which the desired depth is specified. We
do not include the algorithm’s details because they can
easily be derived from the previous algorithm.
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For a t-ary tree, this modification implies a factor of
(but not 4’) in the algorithm’s time complexity, because
any record placed at the parent covers one child’s sub-
tree at same depth as for another child’s subtree. Thus, it
takes 4 times as long to compute the cost of each subtree.

4.7.6 Randomization

The above tree algorithm was static, and the solution
generated would always be the same for the same set
of documents. Thus, it does not satisfy the desirable
requirement that even identical subscriptions have differ-
ent solutions. This can be remedied by using for each
subscription a random re-naming n of the node names
and then using the new names to describe the subscrip-
tion on the card. More precisely, at the card generation
time, we first run the dynamic programming algorithm
to generate card representation. Next, we choose a ran-
dom permutation 7 over the n nodes of the hierarchy
(the permutation must satisfy the properties listed in
Sect. 4.3) and apply the permutation to the nodes used
in the card representation. We then store such permuted
representation of access rights on the card.

When the user requests access to a document i, the
card, as before, first asks the server for the i-to-root
path P in the hierarchy. Then it applies the random
re-naming 7 to all of the nodes of that path P, and it
finally compares those values with its stored subscrip-
tion description to determine whether access should be
granted.

4.8 Dynamic changes to the repository

In this section we first focus on handling dynamic changes
to the repository consisting of unstructured data (i.e., a
mere collection of numbered items), and later address
this issue for hierarchically structured collections of doc-
uments (i.e., trees).

As was shown in Sect. 4.6, the scheme is forward com-
patible when the documents within the repository are
not organized into a structure, i.e., addition of new items
to the repository is modeled as assigning to each of them
anumber strictly larger than the current number of doc-
uments in the repository. For instance, if the current data
repository has n documents (numbered 1 through n)
and there are cards that generate permutations over
these n documents, addition of new d documents will
result in their numbers beingn+1,. . .,n+d, and a newly
generated card will store permutations over these n + d
documents.

Deletions of documents are also possible using our
scheme. First, we would like to point out that a docu-
ment will not be taken out from the repository while
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that document is present in at least one current cus-
tomer subscription (information about documents in use
can be collected at the time of subscription purchase;
note that this does not violate privacy of the customers).
When an unpopular is, however, being removed from
the repository, we do the following: the document is sim-
ply removed without affecting the rest of the repository
(i.e., the remaining documents are not re-numbered).
This leaves a “hole” in the consecutive numbering of
documents, but if the next new document is assigned
this number, the effect of discontinuous numbering is
mitigated. Since data repositories tend to grow (but not
shrink) over time, removal of documents will not result
in unnecessary increase of the number of items being
permuted.

Now we would like to discuss handing of dynamic
changes in hierarchically structured data repositories.
Unlike in the unstructured case, now in addition to inser-
tions and deletions, we also need to deal with restruc-
turing of the items in the repository.

In general, handling dynamic changes to the hierar-
chy requires more careful treatment, because the struc-
ture “captured” by the access right representations on
existing cards must be preserved. Therefore, in order to
ensure compatibility, any changes we introduce cannot
modify the structure of the previous state of the data
repository. That is, new branches and subtrees can be
added at the root of the tree; and documents to which no
user is currently subscribed can safely be removed from
the tree (without removing from the data structure the
parts of the tree that correspond to such documents).

Structural changes that affect the old parts of the tree
can be done using scheduled periodic updates. That is,
insertions are introduced as they occur, but such docu-
ments are attached as new branches at the root level;
deletions and re-structuring, on the other hand, are de-
layed until the next update. During an update, the struc-
ture of the tree is modified using all pending deletions
and re-structuring (parts added to the tree after the last
update are also moved to their appropriate places, if nec-
essary). All users submit their subscription preferences
and are issued new cards. (Note that in our model it is
impossible to recover exact access rights that a user had
using her access right representation, therefore we allow
each user to select possibly a different set of documents,
the total value of which corresponds to the subscription
price paid.)

5 Approach based on MPHF

In addition to the notation described in Sect. 3.2, in this
section we use the following notation: a hash function

h: X — Y is called a perfect hash function if it is 1-1,
ie. Vxi,x2 € X, h(xy) # h(x) iff x; # xp. In other
words, perfect hash functions never result in collisions.
A hash function 4 : X — Y is called a MPHF if it is 1-1
and for which |X| = |Y| . An order-preserving MPHF
(OPMPHF) also has the property that it maps the ith
smallest element of X into the integer i.

In what follows we use f to denote a MPHF that
maps {i1, ..., im} to {1, ..., m} without collisions. Also,
functions f’, f” denote order-preserving MPHFs each of
which maps {iy, ..., in} to {1, ..., m} without collisions
and in an order-preserving manner (i.e., f'(ij) = j).

In this section we first give a preliminary solution that
utilizes minimal perfect hash functions and is described
in Sect. 5.1. For a subscription order of m documents,
it results in access rights representations O(cm) space
and the probability of false positives being 27¢, where
¢ is an adjustable parameter. The second, improved,
solution uses order-preserving MPHF to achieve sig-
nificantly better asymptotic performance: with O(cm)
storage space available, the probability of false positives
is m~¢. It can be found in Sect. 5.2. Section 5.3 describes
extensions to the schemes: it discusses how certain items
can be completely eliminated from the possible false
positives and also covers space utilization techniques for
hierarchies. Finally, Sect. 5.4 addresses dynamic changes
to the repository.

5.1 A preliminary solution

Given a card that can store k = O(cm) bits, this ap-
proach gives us: (1) a card creation time polynomial in
m, and (2) the probability of false positives 27¢. Note
that it is reasonable to assume that cards can store cm
bits. The reason is that this space will be small for rel-
atively small orders; for larger, more expensive orders
one can use cards of larger capacity, the manufacturing
cost of which can be offset by the amount charged for
the subscription order.

In what follows, H is a keyed cryptographic one-way
hash, whose key is unique to each card (to make false-
positive information sharing impossible); the key’s pur-
pose is not cryptographic security, but rather making
each card unique. The k bits available do not include
the bits needed for storing the key for the hash H, which
would be small in practice. For instance, a 20-bit key
would result in a million different cards that can request
identical m items yet be different; and the possibility of
such sharing when the two cards correspond to different
sets of documents significantly decreases. An alternative
to a keyed H is to have the same hash function H for
all cards, but force the random choices made during the
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computation of a suitable MPHF to vary from card to
card.

5.1.1 Card creation

1. Compute a MPHF f for {iy,..., i;y}. Store f in the
card using O(m) bits (according to [22], a MPHF
for m random strings can be stored using bm bits,
where b is a constant and can normally be 2). This
leaves k' = O(cm) bits available for what follows.

2. Partition these k' bits into m blocks of ¢ bits each;
call them blocks B; (i = 1,...,m).

3. Let the hash function H(x) produce a c bits long
hash of x (e.g., by considering only ¢ of the 160
bits it produces in case of SHA-1). For every item
i €f{i1,...,im}, if f(i) = j, then set the bits of block
Bj on the card equal to H ().

5.1.2 Access verification

Every time a customer uses her card to request access
to an item i, the card performs the following:

1.  Compute f(i); assume f (i) = j.

2. Compare the c bits of the card’s block B; to the
corresponding computed c bits of H (7).

3. Access is allowed if these ¢ bits match, and denied
otherwise.

5.1.3 Analysis

Theorem 1 Given k = O(cm) storage space, the above
MPHF-based approach produces in time polynomial in
m a solution with the properties of (a) transaction
unlinkability and untraceability, (b) unique policy rep-
resentation, (c) no additional sources of information,
(d) forward compatibility, and (e) probability of false
positives 27¢.

Proof Card creation takes time polynomial in m be-
cause a MPHF can be generated in polynomial time
[23]. Given k = (c+ b)ym = O(cm) space, the PFP is less
than 27¢ (see, e.g., [22] for more detail).

Transaction untraceability is achieved because the
card anonymously authenticates to the server and then
everything else it sends is a request for a specific data
item with no personal or card-specific information. By
the same argument, any two transactions are also un-
linkable.

Unique policy representation is achieved through the
use of the keyed hash function H or, alternatively, by
randomizing f itself. Each card will also stay operational
as we add more items to the data repository because the
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card is dependent on the purchased items and contains
no information about other items or the size of the data
repository. This means that the forward compatibility
requirement is satisfied. Finally, by design this scheme
does not use any additional sources of information. [J

5.1.4 Case where c = logm

If in the above ¢ = ¢'logm where ¢’ is constant, then
the scheme has k = O(c'mlogm) bits of storage and
an m~¢ probability of false positive. In such a case,
however, the following simpler scheme that achieves
the same bounds can be used. We use a keyed hash
function F (not a perfect one — collisions can occur)
that maps items in the range [1,#] into [1,m¢*1]. An
example of such a function that we use in our fur-
ther discussion is F(i) = H(i) mod m¢+! where H is
a keyed cryptographic one-way hash function. What the
card stores is the (at most m) elements of [1,m¢*+1] to
which the subscription items map. It allows access to
a requested item i iff F(i) is stored on the card. Since
each of the (at most) m numbers stored is (1 + ¢’) logm
bits long, the total space needed is O(c’'mlogm) bits.
The probability of a false positive is no greater than
m/mcurl = m~¢. This matches the MPHF scheme’s
performance if k = mlogm, but it cannot be used if
k = o(mlogm). When it can be used, however, it has the
potential for the following heuristic improvement in its
space usage: the m stored elements from [1, m€+1] could
be such that the trie implied by their bit representations
makes further space savings possible (by storing com-
mon prefixes or other common bit patterns only once).
The expected space needed to store the trie, however,
remains O(mlogm) bits so the savings are by no more
than a constant factor, and the multiplicative factor of
log m in the space complexity remains.

The scheme in the next section achieves the same
false positives probability performance of m~¢ but with-
out the multiplicative factor of logm in the space used.

5.2 An asymptotically better solution

Given k = O(cm) space available on the card, the ap-
proach described in this section and which is based on
usage of order-preserving MPHFs gives us: (1) a card
creation time polynomial (in fact, linear) in m, and (2)
the probability of false positives m~—¢, where ¢ is an
integer parameter that can be chosen so as to achieve a
desired PFP. For large enough m (which we assume is
the case since m > k/logn), however, it is sufficient to
have ¢ = 1. We start with describing the ¢ = 1 version
of the scheme, after which we extend it to larger values
of c.
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5.2.1 Card creation

As usual, we deal with a subscription order {iy,...,in},
where i} < ip < ... < iy,. We use two order-preserving
minimal perfect hash functions /" and f”, each computed
for this subscription order: f'(ij) = j and f”(ij) = j for
all j € [1,m]. To see why we use different functions
f" and f”, we first need to recall that the construction
of an order-preserving MPHF involves many random
choices along the way, and f” and f” will differ through
those different random choices. While the effect of such
functions on the clements of the set {iy,...,i,} is fixed
and well known for all i; (i.e., f'(ij) = f"(ij) = j), their
effect on elements not in the set {iy,.. .,i,} is arbitrary.
Consequently, we use two different functions f” and f”
for their different effects on randoms r that are not in
set {i1,...,i;}. This is an unusual use of such functions
because we use their random effect on an r that is not
in the set, as much as their predictable effect on an i;
from the set. The card hence stores f" and f”, which take
O(m) bits of space.

While the effect of those random choices on a random
r & {iy,...,i;} hasnot been investigated in the literature,
we postulate that the existing OPMPHF schemes can be
used to hash such an r uniformly on the interval [1, m].
That is, each of f/(r) and f”(r) is random and uniformly
distributed over [1,m]. What follows is subject to this
assumption”.

5.2.2 Access verification

To verify a request to access an item i, the card needs
to perform the following steps:

1. It computes f'(i) and f” (i).
2. Access is granted if f'()) = f”(i), and denied
otherwise.

5.2.3 Extension to higher values of c

The above description results in the PFP being (1/m).
To obtain versions of the scheme with PFP of (1/m¢)
for ¢ > 1, instead of using two functions f' and f”,

5 It is possible that OPMPHF representations that use an opti-
mally small number of bits bm will not involve many random
choices for certain elements of the set {i1, .. ., i, }. This means that
f'(r) and f”(r) might not be truly independent for some values of
r. To magnify the randomization effect of the functions on such
r’s, we might want to increase the space occupied by the functions
by increasing the value of the constant b, and make sure that the
number of random choices during function generation is large.
Obviously, this topic deserves further investigation and formal
treatment.

we use ¢ + 1 such functions: access to i is granted if
all ¢ 4+ 1 functions map i into the same value, and is
denied otherwise. Of course, different random parame-
ters are selected when constructing each of these ¢ + 1
functions, and the space complexity becomes O(cm)
bits.

Note that if the value of c is relatively large com-
pared to m, it might be difficult or even impossible to
generate ¢ + 1 different functions for those m items.
In such a case, either the value of ¢ might be low-
ered, or the space needed to store these ¢ + 1 func-
tions might have to be increased (each function will
still require O(m) bits but with a larger than optimal
constant).

5.2.4 Analysis

Theorem 2 Given k = O(cm) space, the above
OPMPHF-based approach produces in time polynomial
in m a solution with the properties of (a) transaction
unlinkability and untraceability, (b) unique policy repre-
sentation, (c) no additional sources of information, (d)
forward compatibility, and (e) probability of false posi-

tives m—¢.

Proof Each of the ¢ + 1 functions can be computed in
linear time and space [21], therefore the claimed card
creation time holds. We now argue that the PFP is m~°.
First we note that, for an r ¢ {iy,...,i;,} to be a false
positive, all of the ¢ + 1 functions must map r into the
same value. Recall from our above assumption that the
choices of different random parameters for each such
function f” randomize f’(r) uniformly over [1,m], and
thus the probability that, given a random r, f’(r) will fall
into a specific cell is (1/m). By choosing the different
functions’ random parameters independently, this effec-
tively makes the value of f'(r) independent of the other
f"(r) values. The probability that the ¢+ 1 functions map
r into the same value is therefore 1 - (1/m)¢ = m™¢.
Property () is ensured through the random choices
in selection of the functions, and properties (a), (c),
and (d) are by the same arguments as in the proof of
Theorem 1. O

5.3 Extensions
In this section we provide two extensions to the scheme
described. Namely, we show how to completely elimi-

nate certain items from the false positives and also how
to extend our scheme to hierarchical data structures.
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5.3.1 Decreasing the value of false positives

Recall that in Sect. 4.5.2 we talked about excluding cer-
tain items of high demand from the list of false posi-
tives. Performance of any of the MPHF-based schemes
can also be improved with respect to the cost of false
positives if we can ensure that such generally popular
(so-called “hot”) items are not among the false posi-
tives. Also recall that for each customer these items can
be system-wide, card-specific, or both.

There are various ways of ensuring that such hot items
are not among the false positives of a customer order.
In what follows we describe different ways of achiev-
ing it. Before proceeding with the specific approaches,
we first describe the pre-processing step that applies to
all of them. The pre-processing requires the algorithm
to determine the following three sets of documents: (1)
the set of documents in the customer order; (2) the set
of system-wide hot items; and (3) the set of card-specific
hot items. Note that the set (2) or (3) could be empty,
depending on the application, the repository, and docu-
ment characteristics. Next, we combine the sets (2) and
(3) into a single one and call it a “negative subscription
list.” Let my, denote the cardinality of such a set. Now
we are ready to proceed with the specific techniques.

1. One way of isolating such hot items from the rest
of the documents is by incorporating their isola-
tion into the random choices used in card genera-
tion. That is, after we make random choices at the
card-creation time, we can evaluate the resulting
encoding against the list of the hot items. If, as a
result, any of them (or any number of them above
a certain threshold) is among the false positives, we
repeat the card-creation process with another set of
random choices until the desired level of false pos-
itives with respect to these hot items is achieved.
Note that the time needed to generate a card with
none of the hot items among the false positives will
be directly proportional to the number of such hot
items. That is, given truly random choices and, for
instance, having k = O(cm) and PFP = 2~¢ (for the
MPHF-based approach), the probability that none
of the hot items are among the false positives is
[1-@ /26)]mh. Thus, the expected number of times
one needs to invoke the card-creation algorithm is
[1— (@725 — 1.

2. Another approach is to map the popular items to
a region different from the legitimate subscription
items on the card. More precisely, given the set
of subscription items and the negative subscription
list, we can use the techniques used in card genera-
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tion on both of them, with the difference that access
to the items in the first set is permitted, while access
to the items from the second set will be denied.
First, we use our techniques to generate a repre-
sentation of access rights for the subscription order
as before. Then we test every item on the hot list
against this representation and determine which of
them are among the false positives (their number
will be PFP-my, on average and we denote that num-
ber as m; ). Next, we create a list consisting only of
the hot items that happened to be false positives,
and apply our techniques to that list mapping it to a
separate region on the card. Access to every docu-
ment that successfully hashes to that second region
will be denied (for that reason we need to check
all documents on the original subscription list to
ensure that access to them will not be denied; if any
of them do hash successfully on the denied region,
re-run this algorithm as many times as needed until
none of the subscription documents land on that
region successfully).

Once the card is created using the above descrip-
tion, it isissued to the customer. When the customer
requests an item, the card first checks that access
to it is permitted (using the first region) and then
it checks that it is not among the items access to
which should be denied (using the second region).
The foregoing approach obviously increases the
space necessary to represent a subscription order.
Thus, now instead of requiring the card’s storage
space k be, for instance, O(cm), it will be a function
of m and my, (e.g., k = O(cym) + O(com))). This
increase in the space, however, may be worthwhile,
if it costs less than the cost associated with the hot
items being among the false positives. It is clear that
this technique should be used when the size of the
hot items list is large enough, so that it is difficult
to prevent these items to be among false positives
using other techniques.

Finally, another way to deny access to hot items is
to merge the list of the subscription items with the
negative subscription list, but place a special mark
on each of them indicating whether access to the
document should be permitted or denied. Thus we
run our regular card-creation algorithm on the joint
list, but mark each resulting hash with a permit or
a deny mark. When a customer requests an item
(having the card generated according to this ap-
proach), access to that item will be permitted only
if passes the card test and the mark on the corre-
sponding hash is of the access type.

This method results in even larger storage increase
than in the previous case (i.e., k = O(cym)+O(comy,)
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instead of k = O(cm)), but it is simple and fast to
produce. Thus, it can be useful in cases when the
list of hot items is short, but the damage of hav-
ing them among the false positives is large (i.e., we
want absolutely none of them to be among the false
positives).

Which method to choose will depend on the target
application and the specific customer order. More pre-
cisely, the size of the subscription order and the number
of hot items access to which must be denied will deter-
mine what approach to use. In general, it is possible
to combine the above techniques into a hybrid scheme,
where, for instance, access to a fraction of the hot items
is prevented through the random choices (using a cer-
tain number of iterations as in the first technique) and
access to the remaining fraction of the hot items is pre-
vented through a negative list. We believe such a hybrid
solution will be best in terms of time and space resources
used.

In general, in our schemes the rate of false positives
is very small (e.g., for m = 100 and ¢ = 3 the PFP is one
in a billion), and therefore even if the list of hot items is
long, only a tiny fraction of them will be among the false
positives, which needs to be isolated. This permits us to
use the above special treatment for those few items, if
we want absolutely no hot items to be among the false
positives.

5.3.2 Improving space utilization for hierarchies

As was mentioned in Sect. 4.7, hierarchically structured
data repositories provide additional possibilities for effi-
ciently utilizing storage space on the cards and therefore
minimizing the rate of false positives. For tree-like hier-
archies, the objects in the repository can correspond to
the leaves of the tree. In addition, the internal nodes
correspond to categories of objects and are also marked
with unique identifiers. Then great space savings can
be achieved if now instead of storing all m items, we
store nodes of the tree, the entire sub-trees of which are
among the m items.

Our techniques can be extended to such hierarchi-
cal repositories if we assume that for every item i its
“path to the root” can be obtained from the server. One
possibility is to use the following procedure to obtain
a list of items to be included in the representation of
access rights. In what follows, assume that the hierarchy
is a tree (of any degree), and the leaf nodes (that corre-
spond to actual items) are numbered 1 through 7 (from
left to right). Let us also assume that the total number of
nodes in the tree is N; the internal nodes are numbered

n+ 1 through N; and the subscription is given as a list of
m leaf nodes {iy,...,i,} sorted in the increasing order.
The resulting list of nodes (which will be used to rep-
resent access rights) is denoted L = {ji,...}. Note that
foreachj, € L,1 < ji < N and |L| < m. The following
procedure creates such a list L:

1. SetL = {i}.
2. Foreachk=2,...,m,do:

(a) Set L = L U {i}.

(b) Letp be the parent of iy andletcy, .. .,c, denote
the children of p. If every ¢; € L, set L = (L \
{c1,...,cp}) Up; and recursively repeat this step
going up in the hierarchy (i.e., starting with the
parent of p until no more changes are made
to L.

Having the list L, we then apply the MPHF techniques
to it to generate the card itself. Note that this will intro-
duce space savings because now instead of having m
records, we will need |L| < m records to represent the
access rights, in some cases having |L| < m. We would
like to point out again that the exact savings will be
determined by the type of the data structure and user
patterns in selecting items for their subscriptions.

Note that unlike in the techniques given in Sect. 4.7
for tree-like hierarchies, the representation of access
rights obtained in the above (or similar) fashion can-
not introduce any false positives: in order to meet the
claimed rate of false positives, no false positives are per-
mitted in addition to those introduced through the use
of MPHF.

Adoption of the above techniques will affect card
operation at the time a user makes a request to access
an item. That is, now instead of directly applying the
hash function to the document being requested (assume
itis /) and checking for its access rights, the card will need
to retrieve information about the nodes on the way from
i to the root. Then the card checks every item on this list
and assumes that the user has access rights to i if she has
access to at least one node on the list.

It is clear that the foregoing techniques involve more
interaction with the server (i.e., retrieval of public infor-
mation stored at the server). Itis not clear, however, how
to avoid this extra interaction: while it is well known that
ancestral relationshipsin a tree are completely described
by two linear listings of its nodes (e.g., preorder and post-
order), thisis not immediately exploitable because of the
randomization introduced by the hashes. This clearly
deserves further investigation.

An additional complication is that, in hierarchically
structured objects, care must be exercised to ensure that
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certain nodes are not among the false positives. For in-
stance, during the card creation process we must ensure
that the root of the tree and other nodes high in the hier-
archy are not among the false positives. This is especially
important now, when information about the hierarchy
(and unique numbers associated with nodes higher up
in the hierarchy) is publicly available. Techniques of the
previous subsection then can be applied to this case to
exclude the special items from the possible false posi-
tives.

5.4 Dynamic changes to the repository

Similar to the scheme given in Sect. 4, we need to con-
sider the behavior of this second approach with respect
to dynamic changes to the repository, which should be
done for both unstructured collections of documents and
repositories in which the documents are organized in a
hierarchy (more precisely, in a tree). In either case, this
scheme exhibits the same characteristics with respect to
dynamic changes as those of the first scheme. Thus, the
results reported in Sect. 4.8 for the first scheme apply to
this case as well and are not repeated here.

6 Comparison of the schemes

In this work we gave two schemes for minimizing space
requirements to permit user access to items of their
choice from a large data repository in a privacy-pre-
serving manner. Both of the schemes comply with the
design goals of: transaction untraceability and unlink-
ability, unique policy representation, single storage de-
vice, fast operation, and forward compatibility of the
schemes. They, however, have drastic differences: while
the first approach assumes a fixed amount of storage
space available for a subscription order and attempts
to produce an encoding that minimizes the number of
false positives for that order, the second approach has
explicit space requirements that depend on the order
size, but it guarantees a low rate of false positives. Thus,
the second method assures the bounds on PFP given the
space available, but the first method is the best-effort
approach that attempts to meet the feasibility criteria.

Properties of the schemes that are based on MPHF
(i-e., from Sect. 5) are summarized in Table 1. The reason
why the table lists performance only of the schemes
based on MPHFs is that the performance of the permu-
tation-based approach will be completely determined
by the stopping criteria used, does not have fixed upper
bounds, and thus cannot be directly compared to other
schemes.
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Table 1 The rates of false positives of the schemes for differ-
ent storage space bounds. Here m is the number of items in the
subscription, k is the storage space, and c is a constant

g k= k=
Scheme bace O(em) | O(emlogm)
MPHF-based 27¢ m=°
OPMPHF-based m=° m—cloem

Among all schemes given in Sect. 5, the tree-based
k = O(mlogm) space approach described in Sect. 5.1.4
is the simplest to implement, and its space usage can be
heuristically lowered as described in that section. This
approach, however, cannot be used if k = o(mlogm),
whereas the MPHF-based scheme can work in cases
when k = o(mlogm), e.g., when k = O(m). In general,
both of these approaches give the same rate of false pos-
itives of m~¢ if k = O(cmlogm). The OPMPHF-based
approach of Sect. 5.2 achieves the same false positives
rate of m~¢, but with an asymptotically lower require-
ment for space: O(cm) bits.

Let us next provide a heuristic to determine what
scheme should be used for card generation, assuming
that all of the approaches are available to build a user’s
card. Let I,, = {i;,...,im}, and let f be a function that
given a set I, C {1,...,n} determines its value and
outputs the maximum allowable card size k. Note that,
depending on the application and available technology,
f might be independent of its argument and always out-
put a fixed size; or it also might use its argument to select
one of the few available card sizes. Let C € {0,1}* de-
note an instance of access rights representation for a set
I,,. Also let us use the following naming conventions for
card generation algorithms:

SingleBitScheme: Can be used when the card’s capac-
ity k exceeds the repository size n. Then the encoding
on a card will allocate one bit per repository docu-
ment and set the bit for each i; € I;;, to 1 and all other
bits to 0. There are no false positives in this case.

ListltemsScheme: Can be used when the card’s capac-
ity k exceeds mlogn. Then the encoding on a card
will list all items i; € I,. Similar to the previous
scheme, PFP = ( in this case.

PermutationScheme: The scheme described in Sect. 4.
This algorithm requires a set of evaluation rules (or
stopping criteria) 7 for its execution. We also define
p,0 < p < 1, to be the portion of the card dedicated
to storing the seed of the random permutation.

MPHFScheme: The MPHF-based scheme described in
Sect. 5.1. In addition to the information about the
subscription order and card capacity, the algorithm
takes two other arguments ¢ and b1. Here ¢ serves
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SelectScheme(n, Im,p, T, c1,c2):
compute k = f(I,,)

if k>n
C = SingleBitScheme(n, I, k)
else

if k <m- [log,n]
C = ListltemsScheme(n, In, k)

else
if k 2 CQme
C = OPMPHFScheme(n, I, k, c2, b2)
else

if k> (C1 —+ b1)m
C = MPHFScheme(n, I, k,c1,b1)
else
C = PermutationScheme(n, I'n,, k,p, 7)
return

Fig. 2 Algorithm for selecting a scheme for card generation

the role of the configurable parameter c in the scheme
(i.e., the probability of false positives will be 27¢1),
and b1 is a constant such that by - m space is needed
to store the MPHF for m items. Note that ¢; may be
a function of m or I,,,.

OPMPHFScheme: This is the scheme described in
Sect. 5.2. Similar to the MPHFScheme(:), this algo-
rithm takes parameters c¢; and b,, where ¢, repre-
sents the desired PFP (i.e., PFP = m~“ and ¢; is
possibly a function of the subscription order) and
by - m bits are needed to store the OPMPHF for m
items. Note that b, will be higher than b;.

Figure 2 gives an algorithm for selecting the most
suitable card generation scheme assuming that all of the
above card creation algorithms are available. It assumes
that the data repository is an unstructured collection of
documents.

Finally, we would like to summarize that our solu-
tions can be used for different applications, with the
most intuitive ones being digital libraries that might
contain books, articles, magazines, and also music, video,
and other objects. With such systems in place, a
customer can purchase a subscription to the items of
interest from stores, or libraries, and have anonymous
access to the documents from many convenient locations
as well. Other usages include access to locally stored
(encrypted) objects, where software trusted by the doc-
ument owners mediates access (effectively playing the
role of the server) and on-demand decrypts the objects
that the user is authorized to access.
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Appendix A

Proof of Lemma 1 Assume, by contradiction, that we
use both positive and negative ranges to express a solu-
tion. We can show that a solution that uses k positive and
negative ranges can be expressed using no more than k
ranges of the positive type only.

Suppose we have a positive range ry, which covers
documents starting from ris; up to riy, and a negative
range r, from document rp; to document raf, respec-
tively. Then with respect of their relative position, there
are four different cases when r| and r; overlap and we
consider them one at a time®:

1. riy < rysand riy > ryr. In this case the intervals rq
and r; can be successfully replaced with two positive
intervals | and r) that range over documents (rys,
ras — 1) and (ror + 1, ryy), respectively.

2. riy < rysand rif < ryr. This case can be handled by
a single positive interval with bounds (r,, r2s — 1).

3. ry > s and riy > ry. In this case, we can also
specify only one positive interval that will cover the
same documents as the original two. The interval
we obtain here is (r2r + 1, r15).

4. riy > ras and riy < rpr. Here no ranges need to be
specified.

Now assume that a negative range overlaps with two or
more positive ranges. We show that we do not benefit
from having negative ranges in the case when a nega-
tive range overlaps two positive ranges. A proof for the
general case when a negative range overlaps with more
than two positive ranges can be achieved by repeatedly
applying the argument that uses only two positive ranges
and such cases are never optimal.

Assume that the two positive ranges are r; and rp
with bounds (714, 717) and (725, r27), respectively, and the
negative range is r3 and covers documents 35 through
r3r. Without loss of generality, assume that the positive
ranges are non-overlapping (any two overlapping ranges
can be replaced by one non-overlapping) and riy < r;.
Then there are four cases of different relative positions
of ri, rp, and r3:

1. ry < r3s, rip > 3, rs < r3f, and rpp > raf,
which can be replaced by two positive intervals with
ranges (r1y, 135 — 1) and (r3¢ + 1, rop).

6 For the sake of simplicity, we assume that all of ry,, 17, 25 and
ryr are distinct. In cases when this condition cannot be assumed
to hold, only structurally insignificant changes to the proof are
needed.
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ris > r3s and rap < r3p, where all intervals can be
simply dropped without affecting the result.

s > I3s, 125 < rap, and rpp > r3p, in which case a
single positive range (r3r + 1, ro¢) can be used.

s < I3s, I'if > I3s, and rpp < rag, in which case also
a single positive range (r,, r3s — 1) can be used.

The case when two negative ranges overlap with a sin-

gle

positive can be proved using a similar argument as

above and is omitted due to insignificant changes. Thus,
it follows that any solution that uses k negative and pos-
itives ranges can be replaced by a solution that uses at
most k positive ranges. This completes the proof. O
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