
Privacy-Preserving K-Means Clustering over Vertically
Partitioned Data

Jaideep Vaidya
Department of Computer Sciences

Purdue University
250 N University St

West Lafayette, IN 47907-2066

jsvaidya@cs.purdue.edu

Chris Clifton
Department of Computer Sciences

Purdue University
250 N University St

West Lafayette, IN 47907-2066

clifton@cs.purdue.edu

ABSTRACT
Privacy and security concerns can prevent sharing of data,
derailing data mining projects. Distributed knowledge dis-
covery, if done correctly, can alleviate this problem. The key
is to obtain valid results, while providing guarantees on the
(non)disclosure of data. We present a method for k-means
clustering when different sites contain different attributes
for a common set of entities. Each site learns the cluster of
each entity, but learns nothing about the attributes at other
sites.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.2.7 [Database Management]: Database
Administration—Security, integrity, and protection; H.2.4
[Database Management]: Systems—Distributed databases

General Terms
Security

Keywords
Privacy

1. INTRODUCTION
Data mining and privacy are often perceived to be at odds,

witness the recent U.S. Senate proposal of a “Data Min-
ing Moratorium Act”[11]. Data mining results rarely vio-
late privacy, as they generally reveal high-level knowledge
rather than disclosing instances of data. However, the con-
cern among privacy advocates is well founded, as bringing
data together to support data mining makes misuse easier.
The problem is not data mining, but the way data mining
is done.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

Imagine the following scenario. A law enforcement agency
wants to cluster individuals based on their financial trans-
actions, and study the differences between the clusters and
known money laundering operations. Knowing the differ-
ences and similarities between normal individuals and known
money launderers would enable better direction of investiga-
tions. Currently, an individual’s financial transactions may
be divided between banks, credit card companies, tax collec-
tion agencies, etc. Each of these (presumably) has effective
controls governing release of the information. These controls
are not perfect, but violating them (either technologically or
through insider misuse) reveals only a subset of an individ-
ual’s financial records. The law enforcement agency could
promise to provide effective controls, but overcoming these
controls now gives access to an individual’s entire financial
history. This raises justifiable concerns among privacy ad-
vocates.

Privacy and data mining can coexist. The problem with
the above scenario is not the data mining results, but how
they are obtained. Current U.S. regulations require banks
to report certain transactions (e.g., large cash deposits), but
law enforcement does not have full access to accounts. If the
results were obtained without sharing information, between
the data sources, and the results could not be used to deduce
private information, data mining would not reduce privacy.
Using these results to devise more effective regulations on
what transactions must be reported could actually improve
both privacy and the ability to detect criminal activity.

While obtaining globally meaningful results without shar-
ing information may seem impossible, it can be done. Al-
gorithms have been developed to efficiently solve several
types of distributed computations in a secure manner. This
paper presents a method for k-means clustering in scenar-
ios like the above, demonstrating how results from secure
multiparty computation can be used to generate privacy-
preserving data mining algorithms. We assume vertically
partitioned data: The data for a single entity are split across
multiple sites, and each site has information for all the enti-
ties for a specific subset of the attributes. We assume that
the existence of an entity in a particular site’s database may
be revealed, it is the values associated with an entity that
are private. The goal is to cluster the known set of com-
mon entities without revealing any of the values that the
clustering is based on.

K-means clustering[9, 13] is a simple technique to group
items into k clusters. The basic idea behind k-means clus-

206

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

 y
ax

is

 xaxis

Title of the graph

Example
Data Points
Projections

Figure 1: Two dimensional problem that cannot be

decomposed into two one-dimensional problems.

tering is as follows:

Initialize the k means µ1 . . . µk to 0.
Arbitrarily select k starting points µ′

1 . . . µ′
k

repeat

Assign µ′
1 . . . µ′

k to µ1 . . . µk respectively
for all points i do

Assign point i to cluster j if distance d(i, µj) is the
minimum over all j.

end for

Calculate new means µ′
1 . . . µ′

k.
until the difference between µ1 . . . µk and µ′

1 . . . µ′
k is ac-

ceptably low.

Each item is placed in its closest cluster, and the cluster
centers are then adjusted based on the data placement. This
repeats until the positions stabilize.

The results come in two forms: Assignment of entities to
clusters, and the cluster centers themselves. We assume that
the cluster centers µi are semiprivate information, i.e., each
site can learn only the components of µ that correspond
to the attributes it holds. Thus, all information about a
site’s attributes (not just individual values) is kept private;
if sharing the µ is desired, an evaluation of privacy/secrecy
concerns can be performed after the values are known.

At first glance, this might appear simple – each site can
simply run the k-means algorithm on its own data. This
would preserve complete privacy. Figure 1 shows why this
will not work. Assume we want to perform 2-means clus-
tering on the data in the figure. From y’s point of view
(looking solely at the vertical axis), it appears that there
are two clusters centered at about 2 and 5.5. However, in
two dimensions it is clear that the difference in the horizontal
axis dominates. The clusters are actually “left” and “right”,
with both having a mean in the y dimension of about 3. The
problem is exacerbated by higher dimensionality.

Given a mapping of points to clusters, each site can inde-
pendently compute the components of µi corresponding to
its attributes. Assigning points to clusters, specifically com-
puting which cluster gives the minimum d(i, µj), requires
cooperation between the sites. We show how to privately
compute this in Section 2.1. Briefly, the idea is that site
A generates a (different) vector (of length k) for every site
(including itself) such that the vector sum of all the site vec-

tors is ~0. Each site adds its local differences |point − µi| to
its vector. At the same time, the vector is permuted in an
order known only to A. Each site (except a single holdout)
sends their permuted vector to site B. Site B sums the re-
ceived vectors, then the holdout site and B perform a series
of secure additions and comparisons to find the minimum
i without learning distances. B now asks A the real index
corresponding to i, giving the proper cluster for the point.

The second problem is knowing when to quit, i.e., when
the difference between µ and µ′ is small enough; we show
how to privately compute this in Algorithm 2. This makes
use of secure sum and secure comparison, described in Sec-
tion 2.3. We will begin with details of the algorithm. We
will introduce background work as necessary, particularly in
the security discussion of Section 3. We discuss mitigating
the risks from colluding parties in Section 4, and communi-
cation cost in Section 5. We conclude with a discussion of
related work, as well as suggestions for future research.

2. PRIVACY PRESERVING K-MEANS AL-
GORITHM

We now formally define the problem. Let r be the number
of parties, each having different attributes for the same set
of entities. n is the number of the common entities. The
parties wish to cluster their joint data using the k-means
algorithm. Let k be the number of clusters required.

The final result of the k-means clustering algorithm is
the value/position of the means of the k clusters, with each
side only knowing the means corresponding to their own
attributes, and the final assignment of entities to clusters.
Let each cluster mean be represented as µi, i = 1, . . . , k. Let
µij represent the projection of the mean of cluster i on party
j. Thus, the final result for party j is

• the final value/position of µij , i = 1 . . . k

• cluster assignments: clusti for all points (i = 1, . . . , n)

The k-means algorithm also requires an initial assignment
(approximation) for the values/positions of the k means.
This is an important issue, as the choice of initial points de-
termines the final solution. Research has led to mechanisms
producing a good initial assignment [4]. Their technique
uses classic k-means clustering done over multiple subsam-
ples of the data, followed by clustering the results to get the
initial points. For simplicity, we assume that the k means
are selected arbitrarily. Since the underlying operations in
[4] involve k-means clustering, it is quite easy to extend our
algorithm to search for and start off with good initial means.

Thus, for i = 1 . . . k, every party selects its share µ′
ij of

any given mean. This value is local to each party and is
unknown to the other parties.

The basic algorithm directly follows the standard k-means
algorithm. The approximations to the true means are itera-
tively refined until the improvement in one iteration is below
a threshold. At each iteration, every point is assigned to the
proper cluster, i.e., we securely find the cluster with the min-
imum distance for each point (this is described in Section
2.1.) Once these mappings are known, the local components
of each cluster mean can be computed locally. We then use
Algorithm 2 (checkThreshold) to test termination: was the
improvement to the mean approximation in that iteration
below a threshold? This is shown formally in Algorithm 1.

207

Algorithm 1 Privacy Preserving k-means clustering

Require: r parties, k clusters, n points.
1: for all sites j = 1 . . . r do

2: for all clusters i = 1 . . . k do

3: initialize µ′
ij arbitrarily

4: end for

5: end for

6: repeat

7: for all j = 1 . . . r do

8: for i = 1 . . . k do

9: µij ← µ′
ij

10: Cluster[i] = ∅
11: end for

12: end for

13: for g = 1 . . . n do

14: for all j = 1 . . . r do

15: {Compute the distance vector ~Xj (to each clus-
ter) for point g.}

16: for i = 1 . . . k do

17: xij = |datagj −D µij |
18: end for

19: end for

20: Each site puts g into Cluster[closest cluster]
{closest cluster is Algorithm 3}

21: end for

22: for all j = 1 . . . r do

23: for i = 1 . . . k do

24: µ′
ij ← mean of j’s attributes for points in

Cluster[i]
25: end for

26: end for

27: until checkThreshold {Algorithm 2}

Algorithm 2 checkThreshold: Find out if the new means
are sufficiently close to old means

Require: Th is a threshold for termination, Random
number generator rand produces values uniformly dis-
tributed over 0..n − 1 spanning (at least) twice the do-
main of the distance function −D.

1: for all j = 1 . . . r do

2: dj ← 0
3: for i = 1 . . . k do

4: dj ← dj + |µ′
ij −D µij |

5: end for

6: end for

7: {Securely compute if
∑

dj ≤ Th.}
8: At P1: m = rand()
9: for j=1 . . . r-1 do

10: Pi sends m + dj (mod n) to Pj+1

11: end for

12: At Pr: m = m + dr

13: At P1: Th′ = Th + r
14: P1 and Pr return secure add and compare(m − Th′

(mod n) > Th′ − m (mod n)) {Secure comparison is
described in Section 2.3.}

The checkThreshold algorithm (Algorithm 2) is straight-
forward, except that to maintain security (and practical-
ity) all arithmetic must be modn. This results in a non-
obvious threshold evaluation at the end, consisting of a se-
cure addition/comparison. Intervals are compared rather
than the actual numbers. Since Th < n/2 and the domain
of −D < n/2, if the result of m−Th′ is positive, it will be less
than n/2, and if it is negative, due to the modulo operation,
it will be greater than n/2. Thus, m−Th′ > Th′−m(modn)
if and only if m < Th′, and the correct result is returned.

2.1 Securely Finding the Closest Cluster
This algorithm is used as a subroutine in the k-means

clustering algorithm to privately find the cluster which is
closest to the given point, i.e., which cluster should a point
be assigned to. Thus, the algorithm is invoked for every
single data point in each iteration. Each party has as its
input the component of the distance corresponding to each
of the k clusters. This is equivalent to having a matrix of
distances of dimension k× r. For common distance metrics;
such as Euclidean, Manhattan, or Minkowski; this translates
to finding the cluster where the sum of the local distances
is the minimum among all the clusters.

The problem is formally defined as follows. Consider r
parties P1, . . . , Pr, each with their own k-element vector ~Xi:

P1 has ~X1 =











x11

x21

...
xk1











, P2 has











x12

x22

...
xk2











, . . . , Pr has











x1r

x2r

...
xkr











.

The goal is to compute the index l that represents the row
with the minimum sum. Formally, find

argmin
i=1..k

(
∑

j=1..r

xij)

For use in k-means clustering, xij = |µij − pointj |, or site
Pj ’s component of the distance between a point and the
cluster i with mean µi.

The security of the algorithm is based on three key ideas.

1. Disguise the site components of the distance with ran-
dom values that cancel out when combined.

2. Compare distances so only the comparison result is
learned; no party knows the distances being compared.

3. Permute the order of clusters so the real meaning of
the comparison results is unknown.

The algorithm also requires three non-colluding sites. These
parties may be among the parties holding data, but could be
external as well. They need only know the number of sites r
and the number of clusters k. Assuming they do not collude
with each other, they learn nothing from the algorithm. For
simplicity of presentation, we will assume the non-colluding
sites are P1, P2, and Pr among the data holders. Using
external sites, instead of participating sites P1, P2 and Pr,
to be the non-colluding sites, is trivial.

The algorithm proceeds as follows. Site P1 generates a
length k random vector ~Vi for each site i, such that

∑r

i=1
~Vi =

~0. P1 also chooses a permutation π of 1..k. P1 then engages
each site Pi in the permutation algorithm (see Section 2.2)

to generate the sum of the vector ~Vi and Pi’s distances ~Xi.

208

The resulting vector is known only to Pi, and is permuted
by π known only to P1, i.e., Pi has π(~Vi + ~Xi), but does not

know π or ~Vi. P1 and P3 . . . Pr−1 send their vectors to Pr.
Sites P2 and Pr now engage in a series of secure addition

/ comparisons to find the (permuted) index of the mini-
mum distance. Specifically, they want to find if

∑r

i=1 xli +
vli <

∑r

i=1 xmi + vmi. Since ∀l,
∑r

i=1 vli = 0, the result
is

∑r

i=1 xli <
∑r

i=1 xmi, showing which cluster (l or m) is
closest to the point. Pr has all components of the sum ex-
cept ~X2 + ~V2. For each comparison, we use a secure circuit
evaluation (see Section 2.3) that calculates a2+ar < b2+br,
without disclosing anything but the comparison result. Af-
ter k−1 such comparisons, keeping the minimum each time,
the minimum cluster is known.

P2 and Pr now know the minimum cluster in the permuta-
tion π. They do not know the real cluster it corresponds to
(or the cluster that corresponds to any of the others items
in the comparisons.) For this, they send the minimum i
back to site P1. P1 broadcasts the result π−1(i), the proper
cluster for the point.

The full algorithm is given in Algorithm 3. Several opti-

Algorithm 3 closest cluster: Find minimum distance clus-
ter

Require: r parties, each with a length k vector ~X of dis-
tances. Three of these parties (trusted not to collude)
are labeled P1, P2, and Pr.

1: {Stage 1: Between P1 and all other parties}

2: P1 generates r random vectors ~Vi summing to ~0 (see
Algorithm 4).

3: P1 generates a random permutation π over k elements
4: for all i = 2 . . . r do

5: ~Ti (at Pi) = add and permute(~Vi, π(at P1), ~Xi(at Pi))
{This is the permutation algorithm described in Sec-
tion 2.2}

6: end for

7: P1 computes ~T1 = π(~X1 + ~V1)
8:
9: {Stage 2: Between all but P2 and Pr}

10: for all i = 1, 3 . . . r − 1 do

11: Pi sends ~Ti to Pr

12: end for

13: Pr computes ~Y = ~T1 +
∑r

i=3
~Ti

14:
15: {Stage 3: Involves only P2 and Pr}
16: minimal← 1
17: for j=2..k do

18: if secure add and compare(Yj + T2j < Yminimal +
T2minimal) then

19: minimal ← j
20: end if

21: end for

22:
23: {Stage 4: Between Pr (or P2) and P1}
24: Party Pr sends minimal to P1

25: P1 broadcasts the result π−1(minimal)

mizations are possible, we discuss these when analyzing the
complexity of the algorithm in Section 5. We now describe
the two key building blocks borrowed from the Secure Multi-
party Computation literature. We first give the permutation
algorithm. We then describe the secure addition compari-

Algorithm 4 genRandom: Generates a (somewhat) ran-
dom matrix Vk×r

Require: Random number generator rand producing val-
ues uniformly distributed over 0..n − 1 spanning (at
least) the domain of the distance function −D.

Ensure: The sum of the resulting vectors is ~0.
1: for all i = 1 . . . k do

2: PartSumi ← 0
3: for j = 2 . . . r do

4: Vij ← rand()
5: PartSumi ← PartSumi + Vij (mod n)
6: end for

7: Vi1 ← −PartSumi (mod n)
8: end for

2(E (X + V))π

r r r(E (X + V))π

i , πV

2

P2

Pr

P1

X 2

X r

E (X), E2 2 2

E (X), Er r r

2

Figure 2: Closest Cluster - Stage 1

son, which builds a circuit that has two inputs from each
party, sums the first input of both parties and the second
input of both parties, and returns the result of comparing
the two sums. This (simple) circuit is evaluated securely
using the generic algorithm described in Section 2.3. Fol-
lowing these, we will prove the security of the method. A
graphical depiction of stages 1 and 2 is given in Figures 2
and 3.

2.2 Permutation Algorithm
The secure permutation algorithm developed by Du and

Atallah simultaneously computes a vector sum and permutes
the order of the elements in the vector. We repeat the idea
here for completeness, for more details see [7]. We do present
a more formal proof of the security of the algorithm than
that in [7], this is given as part of the overall security proof
of our algorithm in Section 3.2.

The permutation problem is an asymmetric two party al-
gorithm, formally defined as follows. There exist 2 parties,
A and B. B has an n-dimensional vector ~X = (x1, . . . , xn),

and A has an n-dimensional vector ~V = (v1, . . . , vn). A also
has a permutation π of the n numbers. The goal is to give
B the result π(~X + ~V), without disclosing anything else. In
particular, neither A nor B can learn the other’s vector, and

209

 (X + V)

 (X + V)π

 (X + V)

π

π

r−1r−1

33

11

r−1

3

P
1

Pr

P

P

Figure 3: Closest Cluster - Stage 2

B does not learn π. For our purposes, the ~V is a vector of
random numbers from a uniform random distribution, used
to hide the permutation of the other vector.

The solution makes use of a tool known as Homomorphic
Encryption. An encryption function H : R → S is called ad-
ditively homomorphic if there is an efficient algorithm Plus
to compute H(x + y) from H(x) and H(y) that does not
reveal x or y. Many such systems exist; examples include
systems by Benaloh[3], Naccache and Stern [24], Okamoto
and Uchiyama[25], and Paillier [26]. This allows us to per-
form addition of encrypted data without decrypting it.

The permutation algorithm consists of the following steps:

1. B generates a public-private keypair (Ek, Dk) for a
homomorphic encryption scheme.

2. B encrypts its vector ~X to generate the encrypted vec-
tor ~X ′ = (x′

1, . . . , x
′
n), x′

i = Ek(xi).

3. B sends ~X ′ and the public key Ek to A.

4. A encrypts its vector ~V generating the encrypted vec-
tor ~V ′ = (v′

1, . . . , v
′
n), v′

i = Ek(vi).

5. A now multiplies the components of the vectors ~X ′

and ~V ′ to get ~T ′ = (t′1, . . . , t
′
n), t′i = x′

i ∗ v′
i.

Due to the homomorphic property of the encryption,

x′
i ∗ v′

i = Ek(xi) ∗ Ek(vi) = Ek(xi + vi)

so ~T ′ = (t′1, . . . , t
′
n), t′i = Ek(xi + vi).

6. A applies the permutation π to the vector ~T ′ to get
~T ′
p = π(~T ′), and sends ~T ′

p to B.

7. B decrypts the components of ~T ′
p giving the final result

~Tp = (tp1, . . . , tpn), tpi = xpi + vpi.

2.3 General Secure Multiparty Computation
/ Secure Comparison

Secure two party computation was first investigated by
Yao [29] and was later generalized to multiparty compu-
tation. The seminal paper by Goldreich proves that there

exists a secure solution for any functionality[15]. The ap-
proach used is as follows: the function f to be computed
is first represented as a combinatorial circuit, and then the
parties run a short protocol for every gate in the circuit. Ev-
ery participant gets (randomly selected) shares of the input
wires and the output wires for every gate. Since determining
which share goes to which party is done randomly, a party’s
own share tells it nothing. Upon completion, the parties
exchange their shares, enabling each to compute the final
result. This protocol can be proven to both give the desired
result and to do so without disclosing anything other than
the result. This approach, though appealing in its generality
and simplicity, means that the size of the protocol depends
on the size of the circuit, which depends on the size of the
input.

This is impractical for large inputs and many parties, as in
data mining. However, for a limited number of simple two-
party operations, such as the secure add and compare func-
tion used in Algorithms 2 and 3, the complexity is reason-
able. For two parties, the message cost is O(circuit size),
and the number of rounds is constant. We can add and com-
pare numbers with O(m = log(number of entities)) bits
using an O(m) size circuit.

3. SECURITY DISCUSSION
We first need to define formally what we mean by secure.

For this, we turn to the definitions of Secure Multiparty
Computation.

3.1 Secure Multi-Party Computation
To prove that our k-means algorithm preserves privacy, we

need to define privacy preservation. We use the framework
defined in Secure Multiparty Computation.

Yao first postulated the two-party comparison problem
(Yao’s Millionaire Protocol) and developed a provably se-
cure solution[29]. This was extended to multiparty compu-
tations by Goldreich et al.[15]. They developed a framework
for secure multiparty computation, and in [14] proved that
computing a function privately is equivalent to computing
it securely.

We start with the definitions for security in the semi-
honest model. A semi-honest party follows the rules of the
protocol using its correct input, but is free to later use what
it sees during execution of the protocol to compromise secu-
rity. A formal definition of private two-party computation
in the semi-honest model is given below.

Definition 1. (privacy w.r.t. semi-honest behavior):[14]
Let f : {0, 1}∗ × {0, 1}∗ 7−→ {0, 1}∗ × {0, 1}∗ be prob-

abilistic, polynomial-time functionality, where f1 (x, y) (re-
spectively, f2 (x, y)) denotes the first (resp., second) element
of f (x, y)); and let Π be two-party protocol for computing
f .

Let the view of the first (resp., second) party during an ex-
ecution of protocol Π on (x, y), denoted viewΠ

1 (x, y) (resp.,
viewΠ

2 (x, y)), be (x, r1, m1, . . . , mt) (resp., (y, r2, m1, . . . , mt)).
r1 represent the outcome of the first (resp., r2 the second)
party’s internal coin tosses, and mi represent the ith message
it has received.

The output of the first (resp., second) party during an
execution of Π on (x, y) is denoted outputΠ1 (x, y) (resp.,
outputΠ2 (x, y)) and is implicit in the party’s view of the ex-
ecution.

210

Π privately computes f if there exist probabilistic polyno-
mial time algorithms, denoted S1, S2 such that

{(S1 (x, f1 (x, y)) , f2 (x, y))}
x,y∈{0,1}∗ ≡

C

{(

viewΠ
1 (x, y) , outputΠ2 (x, y)

)}

x,y∈{0,1}∗

{(f1 (x, y) , S2 (x, f1 (x, y)))}
x,y∈{0,1}∗ ≡

C

{(

outputΠ1 (x, y) , viewΠ
2 (x, y)

)}

x,y∈{0,1}∗

where ≡C denotes computational indistinguishability.

The above definition states that a computation is secure if
the view of each party during the execution of the protocol
can be effectively simulated knowing only the input and the
output of that party. This is not quite the same as saying
that private information is protected. If information can be
deduced from the final result, it is obviously not kept private
under this definition. For example, if two entities map to
different clusters, they must have some attribute values that
are different. If one site has exactly the same values for those
entities, it has learned the “private” information that those
entities have different values in the attributes held by some
other site. This cannot be helped, as this information can
always be deduced from the result and the site’s own input.

A key result we use is the composition theorem. We state
it for the semi-honest model. A detailed discussion of this
theorem, as well as the proof, can be found in [14].

Theorem 1. (Composition Theorem for the semi-honest
model): Suppose that g is privately reducible to f and that
there exists a protocol for privately computing f. Then there
exists a protocol for privately computing g.

Proof. Refer to [14].

Our protocols are somewhat stronger than the semi-honest
model. The proofs hold in any situation where the parties
do not collude to discover information; a single malicious
party may disrupt the results, but cannot learn private in-
formation that would not be revealed by the result. This
will become apparent in the proofs below.

3.2 Permutation Algorithm
The permutation algorithm reveals nothing to A, so A’s

view must be simulated using only it’s own input. B gets
the result vector.

Theorem 2. The Permutation Algorithm (Section 2.2)
privately computes a permuted vector sum of two vectors,
where one party knows the permutation π and the other gets
permuted sum π(~X + ~V).

Proof.

A′s view:
A receives an encryption key Ek and a encrypted vector ~X ′

of size n. It can simulate the encryption key by generating a
single random number from a uniform random distribution.
Assuming security of encryption and since A knows the n,
the vector ~X ′ can also be simulated simply by generating n
randoms from an uniform distribution. Using its own vector
~V and the simulated input, the simulator for A can perform
steps 4–6 to complete the simulation of A’s view.

B′s view:
The simulator for B performs steps 1 and 2 to generate Ek

and ~X ′. In step 6 B receives a size n vector ~T ′
p. To simulate

~T ′
p, B encrypts the components of the result Tp = π(~X + ~V):

t′pi = Ek(tpi).
The simulator for both runs in time linear in the size of

the input vectors, meeting the requirement for a polynomial-
time simulation.

3.3 Closest Cluster Computation
Algorithm 3 returns the index of the closest cluster (i.e.,

the row with the minimum row sum). To prove this algo-
rithm is privacy preserving, we must show that each party
can construct a polynomial time simulator for the view that
it sees, given only its own input and this closest cluster in-
dex.

Theorem 3. Algorithm 3 privately computes the index of
the row with the minimum row sum, revealing only this result
assuming parties do not collude to expose other information.

Proof. The simulator is constructed in stages, corre-
sponding to the stages of the algorithm.

Stage 1. The only communication occurring in this stage
occurs in the r−1 calls to the Permutation Algorithm. Thus,
we simply need to apply the composition theorem stated in
Theorem 1, with g being the closest cluster computation
algorithm and f being the permutation algorithm. What
remains is to show that we can simulate the result Ti. The
simulator for P1 is exactly the algorithm used by P1, without
sending any data. For the remaining sites, since the vi are
unknown and chosen from a uniform distribution on (0..n−
1), vi +xi will also form a uniform distribution on (0..n−1).

Each Pi, i = 2 . . . r can simulate the vector ~Ti by selecting
values randomly from a uniform distribution on (0..n − 1).
This is indistinguishable from what it sees in the algorithm.

Stage 2. All the parties other than P2 and Pr send their
permuted result vectors to the receiver. Since only Pr sees
new information, we need only concern ourselves with sim-
ulating what it sees. The received vectors can be simulated
by Pr exactly as they were simulated by the Pi in Stage
1. The vector ~Y is equal to the actual distances minus ~T2.
However, since ~T2 consists of values uniformly distributed
over (0..n − 1), ~Y is effectively distances − v, and is thus
also uniformly distributed over (0..n−1). However, we can-
not simulate it by generating random values, as we must
preserve the relationship ~Y = ~T1 +

∑r

j=3 Tj (mod n). For-

tunately, the sum of the simulator-generated ~Ti will give a
vector ~Y that both meets this constraint and is uniformly
distributed over (0..n − 1), giving a view that is indistin-
guishable from the real algorithm.

Stage 3. Here P2 and Pr engage in a series of comparisons.
Again, we use the composition theorem. Each comparison
is secure, so we need only show that we can simulate the
sequence of comparison results.

The simulator uniformly chooses a random ordering of
the k clusters from the k! possible orderings. We regard
this as the distance-wise ordering of the clusters relative to
the point. This ordering is used to choose the appropriate
result, ≤ or >, for each comparison. Effectively, the sim-
ulator runs steps 17-21, but makes the comparisons locally
based on the random ordering. The probability of any given

211

ordering is 1/k!, the same as the probability of any given or-
dering achieved after the permutation π in the actual view.
Therefore, the probability of any given sequence of compari-
son results is the same under the ordering as under the view
seen in the actual algorithm.

Note that all of the possible 2(k−1) sequences are not
equally likely, e.g., the sequence of all >s corresponds to
only one ordering, while the sequence of all ≤s corresponds
to (k−1)! orderings. However, selecting random total order-
ings generates sequences matching the (non-uniform) prob-
ability distribution of the actual sequences of comparisons.

Stage 4. Pr (or P2) sends the index i to P1. Since the
true index it is the final result known to all the parties, and
P1 decides upon the permutation π, the simulator generates
π(it) = i as the message it receives.

The final result it is sent to all parties. Since this is the
final result, obviously all the parties can simulate it.

Since this simulator is also linear in the size of the in-
put, and we have proven the permutation algorithm to be
secure, application of the composition theorem proves that
Algorithm 3 preserves privacy.

3.4 Stopping Criterion
Before analyzing the security of the entire k -means al-

gorithm, we prove the security of the threshold checking
Algorithm 2.

Theorem 4. Algorithm 2 determines if
∑

|µ′
ij −D µij | <

Th|, revealing nothing except the truth of this statement.

Proof. Steps 10 and 14 are the only steps of Algorithm
2 requiring communication, so the simulator runs the algo-
rithm to this point. In step 10, party P1 first sends m + d1

(mod n) where m is the random number known to P1. Each

of the parties Pj , j = 2 . . . r receive a message m +
∑i

j=1 dj

from their left neighbor. Since m is chosen from a uniform
distribution on (0 . . . n−1), and all arithmetic is mod n, this
sum forms a uniform distribution on (0 . . . n−1) and can be
simulated by generating a random number over that distri-
bution:

Pr
[

V IEW Algorithm 2 Step 10
j = x

]

= Pr

[

m +

j
∑

i=1

di = x

]

= Pr

[

m = x−

j
∑

i=1

di

]

=
1

n
= Pr [Simulatorj = x]

The secure add and compare algorithm gives only the fi-
nal result m−Th′ (mod n) > Th′−m (mod n) =

∑r

j=1 dj ≤
Th. Step 14 is easily simulated knowing that result.

This simulator runs in the O(k) time required by the Al-
gorithm, and is thus polynomial. Applying the composition
theorem with Algorithm 2 as f and secure add and compare
algorithm as g, along with the other facts given above, proves
that Algorithm 2 is secure.

3.5 Overall k-means algorithm
We now analyze the security of the entire k-means algo-

rithm. In every iteration, the following things are revealed
to the parties:

• Each party’s local share of the k cluster means.

• The cluster assignment for every point.

These values are the desired result of the final iteration.
Since it is impossible to know in advance the number of
iterations required to halt, the number of iterations needs
to be accepted as part of the final output. The results from
the intermediate iterations may be used to infer information
beyond this result. For example, if the cluster centers for
site j do not change between iterations, and a point moves
between two clusters, site j knows that those two clusters are
both relatively close to the point across the sum of the other
sites. However, since the location of the point in the other
dimensions is not known, this information is of little use.
In any iteration the final assignment of points to clusters is
the same for every party. If this intermediate assignment
should not be revealed, either a genuine third party will
be required or else the algorithm will be quite inefficient.
Allowing the intermediate results to be accepted as part of
overall results allows an efficient algorithm with provable
security properties. Forbidding knowledge of intermediate
results would prevent each site from computing the next
iteration locally, making the entire computation much more
expensive.

We therefore state the proven overall security properties
in the following theorem.

Theorem 5. Algorithm 1 is a private algorithm comput-
ing the k clusters of the combined data set, revealing at most
the point assignment to clusters at each iteration and the
number of iterations required to converge.

Proof. All of the communication in Algorithm 1 all oc-
curs in the calls to Algorithms 3 and 2. The results of Algo-
rithm 3 are point assignments to clusters, and can be simu-
lated from the known result for that iteration. The results
of Algorithm 2 are easily simulated; for all but the final it-
eration it returns false, in the final iteration it returns true.
Applying the composition theorem shows that within the
defined bounds the k-means algorithm is secure.

4. HANDLING COLLUSION
Parties P1, and Pr have more information than the others

during the execution of the above algorithm. Specifically,
P1 knows

1. the permutation π, and

2. the values of the random splits (i.e., the random matrix
Vk×r).

Pr learns

1. the permuted result vectors of the permutation algo-
rithm (~Ti) for all the parties other than P2, and

2. the comparison results.

(Note that P2 also learns the comparison results.) While we
have proven that this information is meaningless in isolation,
collusion between P1 and Pr provides enough information
to derive the distances between each point and each party’s
means. It is necessary to carefully select these two parties
so that all parties are confident the two will not collude.

The assumption of non-collusion is often implicitly made
in the real world. For example, take the case of lawyers

212

for parties on opposite sides in court. While no techni-
cal means prevent collusion, safeguards exist in the form
of severe punishments for breaking this rule as well as the
business penalty of lost reputation. Similar legal and rep-
utation safeguards could be enforced for privacy-preserving
data mining. In addition, if there were not at least two par-
ties who did not want to share information, there would be
no need for a secure algorithm. Since collusion between P1

and Pr reveals P1’s information to Pr, P1 would be unlikely
to collude simply out of self-interest.

However, technical solutions are more satisfying. Let p,
1 ≤ p ≤ r − 1, be a user defined anti-collusion security pa-
rameter. We present a modification of the algorithm that
guarantees that at least p + 1 parties need to collude to dis-
close additional information. The problem is in Algorithm
3. The key idea is that stage 1 is run p times, each time
selecting a new party to act as P1. Thus, the permuta-
tion π and the random matrix Vk×r is different for every
run, however the row sum of each V matrix is ~0, so the to-
tal sum is still the actual distance. In stage 4, to get the
true index from the permuted index, the p parties apply
their inverse permutations in order. Thus, the true index is
π−1

1 (π−1
2 (. . . (π−1

p (i′)) . . .)).

5. COMMUNICATION ANALYSIS
We give a bottom-up analysis of the communication cost

of one iteration of the algorithm. The total cost is dependent
on the number of iterations required to converge, which is
dependent on the data. Assume r parties, n data elements,
and that encrypted distances can be represented in m bits.

The permutation algorithm requires only two rounds of
communication. For length-n vectors, the total bit cost is
2n ∗m + public key size = O(n) bits.

The secure add and compare algorithm is a two party
protocol, implemented using secure circuit evaluation. There
are several general techniques for implementing circuit eval-
uation that optimize different parameters such as compu-
tation cost, communication cost (number of rounds or to-
tal number of bits), etc. The basic tool used, one out
of two oblivious transfer, can also be implemented in sev-
eral ways. Methods exist that require a constant number
of rounds of communication (by parallelizing the oblivious
transfers) with bit communication cost linear in the number
of gates in the circuit. An excellent survey is given in[12].
The secure add and compare algorithm requires two addi-
tion circuits and one comparison circuit, all of m = log n bits
(where n is based on the resolution of the distance). Both
addition and comparison require a number of gates that is
linear in m. Therefore this step requires a constant number
of rounds and O(m) bits of communication.

In Algorithm 3, closest cluster, communication occurs in
several places. Steps 4−5 make r−1 calls to the permutation
algorithm with size k vectors. Steps 10 − 11 require r − 2
rounds of communication and (r−2)∗k∗m bits. Steps 17−18
use k − 1 calls to the secure add and compare algorithm.
Steps 24 − 25 require two rounds with O(r log k) bit cost.
Thus the total cost is 2(r − 1) + r − 2 + (k − 1) ∗ const ≈
3r+const∗k = O(r+k) rounds and 2k∗m∗(r−1)+k∗m∗
(r−2)+(k−1)∗const∗(logn) ≈ 3∗m∗kr+kc log n = O(kr)
bits.

The collusion resistant variant of Section 4 multiplies the
cost of steps 4 − 5 and step 24 by a factor of p. This gives
O(pr + k) rounds and O(pkr) bits.

We now give a communication analysis of Algorithm 2.
Step 10 involves r−1 rounds of communication, with bit cost
(r−1)∗m. Step 14 makes one call to secure add and compare,
for constant rounds and O(m) bits. Thus, the total cost is
O(r) rounds and O(rm) bits.

Finally, we come to the analysis of the entire algorithm.
We do not count any setup needed to decide the ordering or
role of the parties. One iteration of the k-means algorithm
requires one call to the closest cluster computation for every,
point and one call to the checkThreshold algorithm. Since
all points can be processed in parallel, the total number of
rounds required is O(r + k). The bit communication cost is
O(nrk).

5.1 Optimizations
The cost of secure comparisons in Stage 3 of Algorithm

3 can be eliminated with a security compromise that would
often be innocuous. First, the random vector generated in
step 2 is generated so the rows sum to randomly chosen r
instead of 0. In Stage 2, all parties (including P2) send their
permuted vectors to Pr. Now Pr can independently find the
index of the row with the minimum row sum. Thus, the
communication cost is 2(r − 1) + r − 1 + 2 ≈ 3r = O(r)
rounds and 2k∗m∗(r−1)+k∗m∗(r−1)+2(logk) ≈ 3krm
bits.

The problem with this approach is that Pr learns the rel-
ative distance of a point to each cluster, i.e., it learns that p
is 15 units farther from the second nearest cluster than from
the cluster it belongs to. It does not know which cluster the
second nearest is. Effectively, it gets k equations (one for
each cluster) in k + 1 unknowns. (The unknowns are the
location of the point, the location of all clusters but the one
it belongs in, and the distance to the closest cluster center.)
Since the permutation of clusters is different for each point,
as is the random R, combining information from multiples
points still does not enable solving to find the exact loca-
tion of a point or cluster. However, probabilistic estimates
on the locations of points/clusters are possible. If the par-
ties are willing to accept this loss of security in exchange for
the communication efficiency, they can easily do so.

Let us now compare our communication cost with that of
the general circuit evaluation method. For one iteration of
the algorithm a circuit evaluation would be required for each
point to evaluate the cluster to which the point is assigned.
Even with an optimized circuit, the closest cluster computa-
tion requires at least r − 1 addition blocks for each cluster.
I.e., it requires approximately kr addition circuits, and k−1
comparison blocks. These blocks are all of width at least m
bits. The best known general method still requires at least
r2 bits of communication for every circuit. Thus, a lower
bound on the amount of bits transferred is O(kmr3) bits.

A simple upper bound on non-secure distributed k-means
is obtained by having every party send its data to one site.
This gives O(n) bits in one round. Privacy is adding a factor
of O(r+k) rounds and O(rk) bit communication cost. While
this tradeoff may seem expensive, if the alternative is not to
perform data mining at all, it seems quite reasonable.

6. CONCLUSIONS
There has been work in distributed clustering that does

not consider privacy issues, e.g., [6, 19]. Generally, the goal
of this work is to reduce communication cost. The idea is
to find important data points or patterns locally and utilize

213

these to compute the global patterns. However, sharing local
patterns inherently compromises privacy. Our work ensures
reasonable privacy while limiting communication cost.

There recently been a surge in interest in privacy-preserving
data mining. One approach is to add “noise” to the data
before the data mining process, and using techniques that
mitigate the impact of the noise from the data mining re-
sults[2, 1, 10, 27].

The approach of protecting privacy of distributed sources
was first addressed for the construction of decision trees[22].
This work closely followed the secure multiparty computa-
tion approach discussed below, achieving “perfect” privacy,
i.e., nothing is learned that could not be deduced from one’s
own data and the resulting tree. The key insight was to
trade off computation and communication cost for accuracy,
improving efficiency over the generic secure multiparty com-
putation method. There has since been work to address
association rules in horizontally partitioned data[17, 16],
EM Clustering in Horizontally Partitioned Data[21], asso-
ciation rules in vertically partitioned data[28], and general-
ized approaches to reducing the number of “on-line” par-
ties required for computation[18]. While some of this work
makes trade-offs between efficiency and information disclo-
sure, all maintain provable privacy of individual information
and bounds on disclosure, and disclosure is limited to infor-
mation that is unlikely to be of practical concern.

Clustering in the presence of differing scales, variability,
correlation and/or outliers can lead to unintuitive results if
an inappropriate space is used. Research has developed ro-
bust space transformations that permit good clustering in
the face of such problems [20]. Such estimators need to be
calculated over the entire data. An important extension to
our work would be to allow privacy preserving computation
of such estimators, giving higher confidence in clustering re-
sults. Similarly, extending this work to the more robust
EM -clustering algorithm [5, 23] under the heterogeneous
database model is a promising future direction. Another
problem is to find the set of common entities without re-
vealing the identity of entities that are not common to all
parties.

We have made use of several primitives from the Secure
Multiparty Computation literature. Recently, there has been
a renewed interest in this field, a good discussion can be
found in [8]. Currently, assembling these into efficient privacy-
preserving data mining algorithms, and proving them se-
cure, is a challenging task. Our paper has demonstrated how
these can be combined to implement a standard data mining
algorithm with provable privacy and information disclosure
properties. Our hope is that as the library of primitives and
known means for using them grow, standard methods will
develop to ease the task of developing privacy-preserving
data mining techniques.

7. ACKNOWLEDGMENTS
We thank Patricia Clifton for comments, corrections, and

catching a flaw in an earlier proof of Stage 3. We also thank
the anonymous reviewers for their detailed suggestions for
improving the paper and acknowledge Murat Kantarcioglu
for a synopsis of secure multiparty computation definitions
and relationship to this work.

8. REFERENCES

[1] D. Agrawal and C. C. Aggarwal. On the design and
quantification of privacy preserving data mining
algorithms. In Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 247–255, Santa Barbara,
California, USA, May 21-23 2001. ACM.

[2] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceedings of the 2000 ACM SIGMOD
Conference on Management of Data, pages 439–450,
Dallas, TX, May 14-19 2000. ACM.

[3] J. Benaloh. Dense probabilistic encryption. In
Proceedings of the Workshop on Selected Areas of
Cryptography, pages 120–128, Kingston, Ontario, May
1994.

[4] P. S. Bradley and U. M. Fayyad. Refining initial
points for K-Means clustering. In Proc. 15th
International Conf. on Machine Learning, pages
91–99. Morgan Kaufmann, San Francisco, CA, 1998.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm (with discussion). Journal of the Royal
Statistical Society, B 39:1–38, 1977.

[6] I. S. Dhillon and D. S. Modha. A data-clustering
algorithm on distributed memory multiprocessors. In
Proceedings of Large-scale Parallel KDD Systems
Workshop, ACM SIGKDD, Aug. 15-18 1999. (Also
published as Large-Scale Parallel Data Mining,
Lecture Notes in Artificial Intelligence, Volume 1759,
pp. 245-260, 2000).

[7] W. Du and M. J. Atallah. Privacy-preserving
statistical analysis. In Proceeding of the 17th Annual
Computer Security Applications Conference, New
Orleans, Louisiana, USA, December 10-14 2001.

[8] W. Du and M. J. Atallah. Secure multi-party
computation problems and their applications: A
review and open problems. In New Security Paradigms
Workshop, pages 11–20, Cloudcroft, New Mexico,
USA, September 11-13 2001.

[9] R. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons, 1973.

[10] A. Evfimievski, R. Srikant, R. Agrawal, and
J. Gehrke. Privacy preserving mining of association
rules. In The Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 217–228, Edmonton, Alberta, Canada, July
23-26 2002.

[11] M. Feingold, M. Corzine, M. Wyden, and M. Nelson.
Data-mining moratorium act of 2003. U.S. Senate Bill
(proposed), Jan. 16 2003.

[12] M. Franklin and M. Yung. Varieties of secure
distributed computing. In Proc. Sequences II, Methods
in Communications, Security and Computer Science,
pages 392–417, Positano, Italy, June 1991.

[13] K. Fukunaga. Introduction to Statistical Pattern
Recognition. Academic Press, San Diego, CA, 1990.

[14] O. Goldreich. Secure multi-party computation, Sept.
1998. (working draft).

[15] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game - a completeness theorem for
protocols with honest majority. In 19th ACM

214

Symposium on the Theory of Computing, pages
218–229, 1987.

[16] M. Kantarcioglu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. In The ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge
Discovery (DMKD’02), pages 24–31, Madison,
Wisconsin, June 2 2002.

[17] M. Kantarcıoĝlu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. IEEE-TKDE, submitted.

[18] M. Kantarcioglu and J. Vaidya. An architecture for
privacy-preserving mining of client information. In
C. Clifton and V. Estivill-Castro, editors, IEEE
International Conference on Data Mining Workshop
on Privacy, Security, and Data Mining, volume 14,
pages 37–42, Maebashi City, Japan, Dec. 9 2002.
Australian Computer Society.

[19] H. Kargupta, W. Huang, K. Sivakumar, and
E. Johnson. Distributed clustering using collective
principal component analysis. Knowledge and
Information Systems, 3(4):405–421, Nov. 2001.

[20] E. M. Knorr, R. T. Ng, and R. H. Zamar. Robust
space transformations for distance-based operations.
In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 126–135, San Francisco, California,
2001. ACM Press.

[21] X. Lin and C. Clifton. Privacy preserving clustering
with distributed EM mixture modeling. Knowledge
and Information Systems, Submitted.

[22] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Advances in Cryptology – CRYPTO 2000,
pages 36–54. Springer-Verlag, Aug. 20-24 2000.

[23] G. J. McLachlan and T. Krishnan. The EM Algorithm
and Extensions. John Wiley & Sons, 1997.

[24] D. Naccache and J. Stern. A new public key
cryptosystem based on higher residues. In Proceedings
of the 5th ACM conference on Computer and
communications security, pages 59–66, San Francisco,
California, United States, 1998. ACM Press.

[25] T. Okamoto and S. Uchiyama. A new public-key
cryptosystem as secure as factoring. In Advances in
Cryptology - Eurocrypt ’98, LNCS 1403, pages
308–318. Springer-Verlag, 1998.

[26] P. Paillier. Public key cryptosystems based on
composite degree residuosity classes. In Advances in
Cryptology - Eurocrypt ’99 Proceedings, LNCS 1592,
pages 223–238. Springer-Verlag, 1999.

[27] S. J. Rizvi and J. R. Haritsa. Maintaining data privacy
in association rule mining. In Proceedings of 28th
International Conference on Very Large Data Bases,
pages 682–693, Hong Kong, Aug. 20-23 2002. VLDB.

[28] J. Vaidya and C. Clifton. Privacy preserving
association rule mining in vertically partitioned data.
In The Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 639–644, Edmonton, Alberta, Canada, July
23-26 2002.

[29] A. C. Yao. How to generate and exchange secrets. In
Proc. of the 27th IEEE Symposium on Foundations of
Computer Science, pages 162–167. IEEE, 1986.

215

